@article{AIHPC_2009__26_6_2253_0,
author = {Wang, Baoxiang and Han, Lijia and Huang, Chunyan},
title = {Global {Well-Posedness} and {Scattering} for the {Derivative} {Nonlinear} {Schr\"odinger} {Equation} {With} {Small} {Rough} {Data}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {2253--2281},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {6},
doi = {10.1016/j.anihpc.2009.03.004},
mrnumber = {2569894},
zbl = {1180.35492},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/}
}
TY - JOUR AU - Wang, Baoxiang AU - Han, Lijia AU - Huang, Chunyan TI - Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2253 EP - 2281 VL - 26 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/ DO - 10.1016/j.anihpc.2009.03.004 LA - en ID - AIHPC_2009__26_6_2253_0 ER -
%0 Journal Article %A Wang, Baoxiang %A Han, Lijia %A Huang, Chunyan %T Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2253-2281 %V 26 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/ %R 10.1016/j.anihpc.2009.03.004 %G en %F AIHPC_2009__26_6_2253_0
Wang, Baoxiang; Han, Lijia; Huang, Chunyan. Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2253-2281. doi: 10.1016/j.anihpc.2009.03.004
[1] , , Interpolation Spaces, Springer-Verlag, 1976. | Zbl
[2] , , Large Data Local Solutions for the Derivative NLS Equation, arXiv:math.AP/0610092v1. | MR
[3] , Global Existence of Small Solutions to Semilinear Schrödinger Equations With Gauge Invariance, Publ. Res. Inst. Math. Sci. 31 (1995) 731-753. | Zbl | MR
[4] , The Initial Value Problem for Cubic Semilinear Schrödinger Equations With Gauge Invariance, Publ. Res. Inst. Math. Sci. 32 (1996) 445-471. | Zbl | MR
[5] , Illposedness of a Schrödinger Equation With Derivative Regularity, preprint, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1363&rep=rep1&type=pdf.
[6] , , Maximal Functions Associated to Filtrations, J. Funct. Anal. 179 (2001) 406-425. | Zbl | MR
[7] , , Local Smoothing Properties of Dispersive Equations, J. Amer. Math. Soc. 1 (1988) 413-446. | Zbl | MR
[8] , , Exact Solutions of the Multidimensional Derivative Nonlinear Schrödinger Equation for Many-Body Systems Near Criticality, J. Phys. A: Math. Gen. 23 (1990) 4269-4288. | Zbl | MR
[9] , , Schrödinger Flow of Maps Into Symplectic Manifolds, Sci. China Ser. A 41 (1998) 746-755. | Zbl | MR
[10] , , Coherent Structures in Strongly Interacting Many-Body Systems: II. Classical Solutions and Quantum Fluctuations, J. Phys. A: Math. Gen. 22 (1989) 4895-4920. | Zbl | MR
[11] H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99-140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf.
[12] , , Low-Regularity Schrödinger Maps, II: Global Well Posedness in Dimensions , Comm. Math. Phys. 271 (2007) 523-559, arXiv:math/0605209v1. | Zbl | MR
[13] , , , Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J. 40 (1991) 253-288. | Zbl | MR
[14] , , , Small Solutions to Nonlinear Schrodinger Equation, Ann. Inst. H. Poincaré Sect. C 10 (1993) 255-288. | Zbl | MR | Numdam
[15] , , , Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998) 489-545. | Zbl | MR
[16] , , , The Cauchy Problem for Quasi-Linear Schrodinger Equations, Invent. Math. 158 (2004) 343-388. | Zbl | MR
[17] , , , , The Genereal Quasilinear Untrahyperbolic Schrodinger Equation, Adv. Math. 206 (2006) 402-433. | Zbl | MR
[18] , Long-Time Behavior of Solutions to Nonlinear Evolution Equations, Arch. Ration. Mech. Anal. 78 (1982) 73-98. | Zbl | MR
[19] , , Global Small Amplitude Solutions to Nonlinear Evolution Equations, Comm. Pure Appl. Math. 36 (1983) 133-141. | Zbl | MR
[20] , , On the Davey-Stewartson Systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 523-548. | Zbl | MR | Numdam
[21] , , Well-Posedness Results for the Generalized Benjamin-Ono Equation With Small Initial Data, J. Math. Pures Appl. 83 (2004) 277-311. | Zbl | MR
[22] , , Global Existence of Small Classical Solutions to Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 303-311. | Zbl | MR | Numdam
[23] , Global Existence of Small Classical Solutions to Nonlinear Evolution Equations, J. Differential Equations 46 (1982) 409-423. | Zbl | MR
[24] , Regularity of Solutions to the Schrödinger Equations, Duke Math. J. 55 (1987) 699-715. | Zbl | MR
[25] , , Global Strichartz Estimates for Nontrapping Perturbations of Laplacian, Comm. Partial Differential Equations 25 (2000) 2171-2183. | Zbl | MR
[26] , , The Dilation Property of Modulation Spaces and Their Inclusion Relation With Besov Spaces, J. Funct. Anal. 248 (2007) 79-106. | Zbl | MR
[27] , , Coherent Structures in Strongly Interacting Many-Body Systems: I. Derivation of Dynamics, J. Phys. A: Math. Gen. 22 (1989) 4877-4894. | Zbl | MR
[28] , Continuity Properties for Modulation Spaces, With Applications to Pseudo-Differential Calculus, I, J. Funct. Anal. 207 (2004) 399-429. | Zbl | MR
[29] , Theory of Function Spaces, Birkhäuser-Verlag, 1983. | Zbl | MR
[30] , , , Isometric Decomposition Operators, Function Spaces and Applications to Nonlinear Evolution Equations, J. Funct. Anal. 233 (2006) 1-39. | Zbl | MR
[31] , , The Global Cauchy Problem for the NLS and NLKG With Small Rough Data, J. Differential Equations 231 (2007) 36-73. | Zbl | MR
[32] , , Frequency-Uniform Decomposition Method for the Generalized BO, KdV and NLS Equations, J. Differential Equations 239 (2007) 213-250. | MR
[33] , , Global Well Posedness and Scattering for the Elliptic and Non-Elliptic Derivative Nonlinear Schrödinger Equations With Small Data, preprint, arXiv:0803.2634.
[34] , The Schrödinger Equation: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (1988) 874-878. | Zbl | MR
Cité par Sources :





