@article{AIHPC_2009__26_3_745_0,
author = {Keraani, Sahbi and Vargas, Ana},
title = {A {Smoothing} {Property} for the ${L}^{2}${-Critical} {NLS} {Equations} and an {Application} to {Blowup} {Theory}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {745--762},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {3},
doi = {10.1016/j.anihpc.2008.03.001},
mrnumber = {2526400},
zbl = {1178.35313},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/}
}
TY - JOUR
AU - Keraani, Sahbi
AU - Vargas, Ana
TI - A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
SP - 745
EP - 762
VL - 26
IS - 3
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/
DO - 10.1016/j.anihpc.2008.03.001
LA - en
ID - AIHPC_2009__26_3_745_0
ER -
%0 Journal Article
%A Keraani, Sahbi
%A Vargas, Ana
%T A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 745-762
%V 26
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/
%R 10.1016/j.anihpc.2008.03.001
%G en
%F AIHPC_2009__26_3_745_0
Keraani, Sahbi; Vargas, Ana. A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 745-762. doi: 10.1016/j.anihpc.2008.03.001
[1] , , Mass Concentration Phenomena for the -Critical Nonlinear Schrödinger Equation, Trans. Amer. Math. Soc. 359 (2007) 5257-5282. | Zbl | MR
[2] , , Interpolation Spaces. an Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin, New York, 1976. | Zbl | MR
[3] , Calcul Symbolique Et Propagation Des Singularités Pour Les Équations Aux Dérivées Partielles Non Linéaires, Ann. Sci. École Norm. Sup. (4) 14 (2) (1981) 209-246. | Zbl | MR | Numdam
[4] , On the Restriction and the Multiplier Problem in , in: Geometrics Aspects of Functional Analysis, Springer Lecture Notes in Math., vol. 1469, 1991, pp. 179-191. | Zbl | MR
[5] , Refinements of Strichartz Inequality and Applications to 2D-NLS With Critical Nonlinearity, IMRN 5 (1998) 253-283. | Zbl | MR
[6] , , Quadratic Oscillations in NLS II. the -Critical Case, Trans. Amer. Math. Soc. 359 (1) (2007) 33-62. | Zbl | MR
[7] , Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003, American Mathematical Society, Providence, RI. | Zbl | MR
[8] , , , , , Almost Conservation Laws and Global Rough Solutions to a Nonlinear Schrödinger Equation, Math. Res. Lett. 9 (2002) 659-682. | Zbl | MR
[9] , , , , Ground State Mass Concentration in the -Critical Nonlinear Schrödinger Equation Below , Math. Res. Lett. 12 (2-3) (2005) 357-375. | Zbl | MR
[10] , , Local Smoothing Properties of Dispersive Equations, J. Amer. Math. Soc. 1 (1) (April 1988). | Zbl | MR
[11] , The Kakeya Maximal Function and the Spherical Summation Multipliers, Amer. J. Math. 99 (1) (1977) 1-22. | Zbl | MR
[12] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness and polynomial bounds for the -critical nonlinear Schrödinger equation in , Preprint.
[13] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness for the -critical nonlinear Schrödinger equation in higher dimensions, Preprint, 2006. | Zbl
[14] Y. Fang, M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in , Preprint, 2006. | Zbl | MR
[15] , Inequalities for Strongly Singular Convolution Operators, Acta Math. 124 (1970) 9-36. | Zbl | MR
[16] , A Note on Spherical Summation Multipliers, Israel J. Math. 15 (1973) 44-52. | Zbl | MR
[17] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain) (in French. French summary) (The Cauchy problem for periodic semilinear PDE in space variables (after Bourgain)), Seminaire Bourbaki, vol. 1994/95. | Zbl | Numdam
[18] , , Blowup Theory for the Critical Nonlinear Schrödinger Equations Revisited, Int. Math. Res. Not. 5 (2005) 2815-2828. | Zbl | MR
[19] , , Remarks on the Blowup for the -Critical Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 38 (4) (2006) 1035-1047. | Zbl | MR
[20] , On the Blow Up Phenomenon of the Critical Nonlinear Schrödinger Equation, J. Funct. Anal. 235 (1) (2006) 171-192. | Zbl | MR
[21] , Determination of Blowup Solutions With Minimal Mass for Nonlinear Schrödinger Equations With Critical Power, Duke Math. J. 69 (2) (1993) 203-254. | Zbl | MR
[22] , Construction of Solutions With Exactly K Blowup Points for Nonlinear Schrödinger Equations With Critical Nonlinearity, Commun. Math. Phys. 129 (2) (1990) 223-240. | Zbl | MR
[23] , Blow-Up Phenomena for Critical Nonlinear Schrödinger and Zakharov Equations, in: Proceedings of the International Congress of Mathematicians, Vol. III, Berlin, 1998, Doc. Math., Extra vol. III, 1998, pp. 57-66. | Zbl | MR
[24] , , On a Sharp Lower Bound on the Blow-Up Rate for the Critical Nonlinear Schrödinger Equation, J. Amer. Math. Soc. 19 (1) (2006) 37-90. | Zbl | MR
[25] , , On Universality of Blow-Up Profile for Critical Nonlinear Schrödinger Equation, Invent. Math. 156 (3) (2004) 565-672. | Zbl | MR
[26] , , Concentration of Blowup Solutions for the Nonlinear Schröinger Equation With Critical Power Nonlinearity, J. Differential Equations 84 (2) (1990) 205-214. | Zbl | MR
[27] , , Compactness at Blowup Time for Solutions of the Critical Nonlinear Schrödinger Equations in 2D, IMRN 8 (1998) 399-425. | Zbl | MR
[28] , , , Schrödinger Maximal Function and Restriction Properties of the Fourier Transform, Int. Math. Res. Not. 16 (1996) 793-815. | Zbl | MR
[29] , , , Restriction Theorems and Maximal Operators Related to Oscillatory Integrals in , Duke Math. J. 96 (1999) 547-574. | Zbl | MR
[30] , Regularity of Solutions to the Schrödinger Equations, Duke Math. J. 55 (1987) 699-715. | Zbl | MR
[31] , , The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. | Zbl | MR
[32] , A Sharp Bilinear Restrictions Estimate for Paraboloids, Geom. Funct. Anal. 13 (6) (2003) 1359-1384. | Zbl | MR
[33] , , , Global Well-Posedness and Scattering for the Mass-Critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions, Duke Math. J. 140 (1) (2007) 165-202. | MR
[34] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, in press. | Zbl
[35] , Mass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1D, SIAM J. Math. Anal. 37 (6) (2006) 1923-1946, (electronic). | Zbl | MR
[36] , Schrödinger Equation: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (4) (1988) 874-878. | Zbl | MR
[37] , , On the Blowup for the -Critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions Below the Energy Class, SIAM J. Math. Anal. 39 (1) (2007) 34-56. | Zbl | MR
[38] , Nonlinear Schrödinger Equations and Sharp Interpolation Estimates, Commun. Math. Phys. 87 (1983) 567. | Zbl | MR
Cité par Sources :






