@article{AIHPC_2009__26_3_705_0,
author = {Saint-Raymond, Laure},
title = {Hydrodynamic {Limits} : {Some} {Improvements} of the {Relative} {Entropy} {Method}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {705--744},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {3},
doi = {10.1016/j.anihpc.2008.01.001},
mrnumber = {2526399},
zbl = {1170.35500},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.001/}
}
TY - JOUR AU - Saint-Raymond, Laure TI - Hydrodynamic Limits : Some Improvements of the Relative Entropy Method JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 705 EP - 744 VL - 26 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.001/ DO - 10.1016/j.anihpc.2008.01.001 LA - en ID - AIHPC_2009__26_3_705_0 ER -
%0 Journal Article %A Saint-Raymond, Laure %T Hydrodynamic Limits : Some Improvements of the Relative Entropy Method %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 705-744 %V 26 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.001/ %R 10.1016/j.anihpc.2008.01.001 %G en %F AIHPC_2009__26_3_705_0
Saint-Raymond, Laure. Hydrodynamic Limits : Some Improvements of the Relative Entropy Method. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 705-744. doi: 10.1016/j.anihpc.2008.01.001
[1] , , Steady Gas Flows Past Bodies at Small Knudsen Numbers - Boltzmann and Hydrodynamic Systems, Trans. Theory Stat. Phys. 16 (1987) 189-199. | Zbl
[2] , , , Fluid Dynamic Limits of the Boltzmann Equation I, J. Stat. Phys. 63 (1991) 323-344. | MR
[3] , , , Fluid Dynamic Limits of the Boltzmann Equation II: Convergence Proofs, Comm. Pure Appl. Math. 46 (1993) 667-753. | Zbl | MR
[4] , , , Strong Solutions of the Boltzmann Equation in One Spatial Dimension, C. R. Acad. Sci. Paris 342 (2006) 843-848. | Zbl | MR
[5] , , , , (Eds.), Kinetic Equations and Asymptotic Theory, Editions scientifiques et médicales Elsevier, Paris, 2000. | MR
[6] , The Boltzmann Equation With a Soft Potential. I. Linear, Spatially-Homogeneous, Commun. Math. Phys. 74 (1980) 71-95. | Zbl | MR
[7] , Global Weak Solutions of the Boltzmann Equation, J. Stat. Phys. 118 (2005) 333-342. | Zbl | MR
[8] , , The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960. | Zbl | MR | JFM
[9] , Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. | Zbl | MR
[10] , , , , Mathematical Geophysics. an Introduction to Rotating Fluids and the Navier-Stokes Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press, Oxford University Press, Oxford, 2006. | MR
[11] , , , Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation, Comm Pure Appl. Math. 42 (1990) 1189-1214. | Zbl | MR
[12] , , Low Mach Number Limit of Viscous Compressible Flows in the Whole Space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271-2279. | Zbl | MR
[13] , , On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results, Ann. of Math. 130 (1990) 321-366. | Zbl | MR
[14] , , On the Influence of the Earth's Rotation on Geophysical Flows, in: Handbook of Mathematical Fluid Dynamics, vol. 4, Elsevier, 2007.
[15] F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for hard potentials, submitted for publication.
[16] H. Grad, Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962, 1963, pp. 26-59. | MR
[17] , Quelques Limites Singulières Oscillantes, Séminaire sur les Equations aux Dérivées Partielles, vol. 21, Ecole Polytech., Palaiseau, 1995. | Zbl | MR | Numdam
[18] , On the Nonlinear Instability of Euler and Prandtl Equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091. | Zbl | MR
[19] , The Vlasov-Poisson-Boltzmann System Near Maxwellians, Comm. Pure Appl. Math. 55 (2002) 1104-1135. | Zbl | MR
[20] , The Boltzmann Equation in the Whole Space, Indiana Univ. Math. J. 53 (2004) 1081-1094. | Zbl | MR
[21] , Begründung Der Kinetischen Gastheorie, Math. Ann. 72 (1912) 562-577. | MR | JFM
[22] , Conditions at Infinity for Boltzmann's Equation, Comm. Partial Differential Equations 19 (1994) 335-367. | Zbl | MR
[23] , , From Boltzmann Equation to the Navier-Stokes and Euler Equations I, Arch. Ration Mech. Anal. 158 (2001) 173-193. | Zbl | MR
[24] , , Une Approche Locale De La Limite Incompressible, C. R. Acad. Sci. Paris 329 (1999) 387-392. | Zbl | MR
[25] , Ekman Layers of Rotating Fluids: the Case of General Initial Data, Commun. Pure Appl. Math. 53 (2000) 432-483. | Zbl | MR
[26] S. Mischler, Kinetic equations with Maxwell boundary condition, Preprint.
[27] , Du Modèle BGK De L'équation De Boltzmann Aux Équations D'Euler Des Fluides Incompressibles, Bull. Sci. Math. 126 (2002) 493-506. | Zbl | MR
[28] , Convergence of Solutions to the Boltzmann Equation in the Incompressible Euler Limit, Arch. Ration. Mech. Anal. 166 (2003) 47-80. | Zbl | MR
[29] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lectures at SISSA, Trieste, Lecture Notes in Mathematics, Preprint. | Zbl
[30] , Fast Singular Limits of Hyperbolic PDEs, J. Differential Equations 114 (1994) 476-512. | Zbl | MR
[31] , Relative Entropy and Hydrodynamics of Ginzburg-Landau Models, Lett. Math. Phys. 22 (1991) 63-80. | Zbl | MR
Cité par Sources :






