@article{AIHPC_2009__26_1_191_0,
author = {Gladiali, Francesca and Grossi, Massimo},
title = {On the {Spectrum} of a {Nonlinear} {Planar} {Problem}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {191--222},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {1},
doi = {10.1016/j.anihpc.2007.10.004},
mrnumber = {2483819},
zbl = {1166.35028},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.10.004/}
}
TY - JOUR AU - Gladiali, Francesca AU - Grossi, Massimo TI - On the Spectrum of a Nonlinear Planar Problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 191 EP - 222 VL - 26 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.10.004/ DO - 10.1016/j.anihpc.2007.10.004 LA - en ID - AIHPC_2009__26_1_191_0 ER -
%0 Journal Article %A Gladiali, Francesca %A Grossi, Massimo %T On the Spectrum of a Nonlinear Planar Problem %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 191-222 %V 26 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.10.004/ %R 10.1016/j.anihpc.2007.10.004 %G en %F AIHPC_2009__26_1_191_0
Gladiali, Francesca; Grossi, Massimo. On the Spectrum of a Nonlinear Planar Problem. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 191-222. doi: 10.1016/j.anihpc.2007.10.004
[1] , , , On a Variational Problem With Lack of Compactness: the Topological Effect of the Critical Points at Infinity, Calc. Var. 3 (1995) 67-93. | Zbl | MR
[2] , Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. | Zbl | MR
[3] , , , The Principal Eigenvalue and Maximum Principle for Second Order Elliptic Operators in General Domains, Comm. Pure Appl. Math 47 (1994) 47-92. | Zbl | MR
[4] , , Convexity of Solutions of Semilinear Elliptic Equations, Duke Math. J. 52 (1985) 431-456. | Zbl | MR
[5] , , , , A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Part II, Commun. Math. Phys. 174 (1995) 229-260. | Zbl | MR
[6] , , , , A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Commun. Math. Phys. 143 (1992) 501-525. | Zbl | MR
[7] , , Partial Differential Equations, Academic Press, Inc., 1988. | Zbl | MR
[8] S.Y.A. Chang, C.C. Chen, C.S. Lin, Extremal functions for a mean field equation in two dimension, preprint. | MR
[9] , , Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry, Comm. Math. Phys. 160 (2) (1994) 217-238. | Zbl | MR
[10] , , Classification of Solutions of Some Nonlinear Elliptic Equations, Duke Math. J. 63 (1991) 615-622. | Zbl | MR
[11] , , On the Symmetry of Blowup Solutions to a Mean Field Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 271-296. | Zbl | MR | Numdam
[12] , , , , Existence Results for Mean Field Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 653-666. | Zbl | MR | Numdam
[13] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. | MR
[14] , , Elliptic Partial Differential Equations of Second Order, Springer, 1998. | Zbl
[15] , , Some Results for the Gelfand's Problem, Comm. Partial Differential Equations 29 (9-10) (2004) 1335-1364. | Zbl | MR
[16] , , On an Eigenvalue Problem Related to the Critical Exponent, Math. Z. 250 (1) (2005) 225-256. | Zbl | MR
[17] , Statistical Mechanics of Classical Particles With Logarithmic Interactions, Comm. Pure Appl. Math. 46 (1) (1993) 27-56. | Zbl | MR
[18] , Harnack Type Inequality: the Method of Moving Planes, Commun. Math. Phys. 200 (1999) 421-444. | Zbl | MR
[19] , On the Nodal Line of the Second Eigenfunction of the Laplacian in , J. Differential Geometry 35 (1992) 255-263. | Zbl | MR
[20] , , Asymptotic Analysis for Two-Dimensional Elliptic Eigenvalues Problems With Exponentially Dominated Nonlinearities, Asymptotic Anal. 3 (1990) 173-188. | Zbl | MR
[21] , , Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967. | Zbl | MR
[22] , Global Analysis for a Two-Dimensional Eigenvalue Problem With Exponential Nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 367-398. | Zbl | MR | Numdam
[23] , Multiple Condensate Solutions for the Chern-Simons-Higgs Theory, J. Math. Phys. 37 (1996) 3769-3796. | Zbl | MR
Cité par Sources :





