@article{AIHPC_2009__26_1_81_0,
author = {Lucia, Marcello},
title = {Isoperimetric {Profile} and {Uniqueness} for {Neumann} {Problems}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {81--100},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {1},
doi = {10.1016/j.anihpc.2007.07.002},
mrnumber = {2483814},
zbl = {1159.58013},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.002/}
}
TY - JOUR AU - Lucia, Marcello TI - Isoperimetric Profile and Uniqueness for Neumann Problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 81 EP - 100 VL - 26 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.002/ DO - 10.1016/j.anihpc.2007.07.002 LA - en ID - AIHPC_2009__26_1_81_0 ER -
%0 Journal Article %A Lucia, Marcello %T Isoperimetric Profile and Uniqueness for Neumann Problems %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 81-100 %V 26 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.07.002/ %R 10.1016/j.anihpc.2007.07.002 %G en %F AIHPC_2009__26_1_81_0
Lucia, Marcello. Isoperimetric Profile and Uniqueness for Neumann Problems. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 81-100. doi: 10.1016/j.anihpc.2007.07.002
[1] , Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. | Zbl | MR
[2] , Isoperimetric Inequalities and Applications, Pitman, London, 1980. | Zbl | MR
[3] V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, Thèse de doctorat, Université Joseph-Fourier, 2003.
[4] , , Minimal Rearrangements of Sobolev Functions, J. Reine Angew. Math. 384 (1988) 153-179. | Zbl | MR
[5] , , Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285, Springer-Verlag, Berlin, 1988. | Zbl | MR
[6] , , , A Mean Field Equation on a Torus: One-Dimensional Symmetry of Solutions, Comm. Partial Differential Equations 30 (2005) 1315-1330. | Zbl | MR
[7] , , , , A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Commun. Math. Phys. 143 (1992) 501-525. | Zbl | MR
[8] , Non-Linear Elliptic Equations in Conformal Geometry, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 2004. | Zbl | MR
[9] , , Conformal Deformation of Metrics on , J. Differential Geom. 27 (1988) 259-296. | Zbl | MR
[10] , , , Extremal Functions for a Mean Field Equation in Two Dimension, Lecture on Partial Differential Equations in honor of Louis Nirenberg's 75th birthday, International Press, 2003, (Chapter 4). | Zbl | MR
[11] , , Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry, Commun. Math. Phys. 160 (1994) 217-238. | Zbl | MR
[12] , Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. | Zbl | MR
[13] , A Lower Bound for the Smallest Eigenvalue of the Laplacian, in: Problems in Analysis, Princeton Univ. Press, Princeton, NJ, 1970, pp. 195-199. | Zbl | MR
[14] , On Relative Isoperimetric Inequalities in the Plane, Boll. Un. Mat. Ital. B (7) 3 (1989) 289-325. | Zbl | MR
[15] , Moser-Trudinger Inequalities Without Boundary Conditions and Isoperimetric Problems, Indiana Univ. Math. J. 54 (2005) 669-705. | Zbl | MR
[16] , , Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | Zbl | MR
[17] , Sharp Borderline Sobolev Inequalities on Compact Riemannian Manifolds, Comment. Math. Helv. 68 (1993) 415-454. | Zbl | MR
[18] , Problems in Analysis, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1982. | Zbl | MR
[19] , Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. | Zbl | MR
[20] , Paul Lévy's Isoperimetric Inequality, Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. | Zbl
[21] , A Best Constant and the Gaussian Curvature, Proc. Amer. Math. Soc. 97 (1986) 737-747. | Zbl | MR
[22] , From 1970 Until Present: the Keller-Segel Model in Chemotaxis and Its Consequences I, Jahresber. Deutsch. Math.-Verein. 105 (2003) 103-165. | Zbl | MR
[23] , From 1970 Until Present: the Keller-Segel Model in Chemotaxis and Its Consequences II, Jahresber. Deutsch. Math.-Verein. 106 (2004) 51-69. | Zbl | MR
[24] D. Horstmann, M. Lucia, Symmetry and uniqueness for some chemotaxis systems, preprint.
[25] , , , The Isoperimetric Problem on Surfaces, Amer. Math. Monthly 106 (1999) 430-439. | Zbl | MR
[26] , , Bounded Palais-Smale Mountain-Pass Sequences, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 23-28. | Zbl | MR
[27] , , Curvature Functions for Compact 2-Manifolds, Ann. of Math. (2) 99 (1974) 14-47. | Zbl | MR
[28] , Statistical Mechanics of Classical Particles With Logarithmic Interactions, Comm. Pure Appl. Math. 46 (1993) 27-56. | Zbl | MR
[29] , Statistical Mechanics Approach to Some Problems in Conformal Geometry, Phys. A 279 (2000) 353-368. | MR
[30] , Géometrie Des Groupes De Transformations, Travaux et Recherches Mathematiques, vol. III, Dunod, Paris, 1958. | Zbl | MR
[31] , Uniqueness of Solutions to the Mean Field Equations for the Spherical Onsager Vortex, Arch. Ration. Mech. Anal. 153 (2000) 153-176. | Zbl | MR
[32] , , Uniqueness of Solutions for a Mean Field Equation on Torus, J. Differential Equations 229 (2006) 172-185. | Zbl | MR
[33] C.-S. Lin, M. Lucia, One-dimensional symmetry of periodic minimizers for a mean field equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., in press. | Zbl | Numdam
[34] , Sur L’équation Aux Differences Partielles , J. Math. 18 (1853) 71-72.
[35] , An Introduction to the Theory of Real Functions, John Wiley & Sons, Ltd., Chichester, 1988. | Zbl | MR
[36] , , A Priori Estimates and Uniqueness for Some Mean Field Equations, J. Differential Equations 217 (2005) 154-178. | Zbl | MR
[37] , A Deformation Lemma With an Application to a Mean Field Equation, Topol. Methods Nonlinear Anal. 30 (2007) 113-138. | Zbl | MR
[38] , Sobolev Spaces, Springer-Verlag, Berlin, 1985. | Zbl | MR
[39] , A Sharp Form of an Inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971) 1077-1092. | Zbl | MR
[40] , Certain Conditions for a Riemannian Manifold to Be Isometric With a Sphere, J. Math. Soc. Japan 14 (1962) 333-340. | Zbl | MR
[41] , On the Positivity of the Effective Action in a Theory of Random Surfaces, Commun. Math. Phys. 86 (1982) 321-326. | Zbl | MR
[42] , The Isoperimetric Inequality, Bull. Amer. Math. Soc. 84 (1978) 1182-1238. | Zbl | MR
[43] , , Some Structures of the Solution Set for a Stationary System of Chemotaxis, Adv. Math. Sci. Appl. 10 (2000) 191-224. | Zbl | MR
[44] , , On Multivortex Solutions in Chern-Simons Gauge Theory, Boll. U.M.I. B (8) 1 (1998) 109-121. | Zbl | MR
[45] , Global Analysis for a Two-Dimensional Elliptic Eigenvalue Problem With the Exponential Nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 367-397. | Zbl | MR | Numdam
[46] , An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem, J. Ration. Mech. Anal. 5 (1956) 633-636. | Zbl | MR
Cité par Sources :





