@article{AIHPC_2007__24_3_413_0,
author = {Lederer, J. and Lewandowski, R.},
title = {A {RANS} {3D} model with unbounded eddy viscosities},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {413--441},
year = {2007},
publisher = {Elsevier},
volume = {24},
number = {3},
doi = {10.1016/j.anihpc.2006.03.011},
mrnumber = {2321200},
zbl = {1132.35069},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/}
}
TY - JOUR AU - Lederer, J. AU - Lewandowski, R. TI - A RANS 3D model with unbounded eddy viscosities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 413 EP - 441 VL - 24 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/ DO - 10.1016/j.anihpc.2006.03.011 LA - en ID - AIHPC_2007__24_3_413_0 ER -
%0 Journal Article %A Lederer, J. %A Lewandowski, R. %T A RANS 3D model with unbounded eddy viscosities %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 413-441 %V 24 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.011/ %R 10.1016/j.anihpc.2006.03.011 %G en %F AIHPC_2007__24_3_413_0
Lederer, J.; Lewandowski, R. A RANS 3D model with unbounded eddy viscosities. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 413-441. doi: 10.1016/j.anihpc.2006.03.011
[1] , Sobolev Spaces, Academic Press, 1975. | Zbl | MR
[2] , The Theory of Homogeneous Turbulence, Cambridge University Press, 1953. | Zbl | MR
[3] , , , , A model for two coupled turbulent fluids, part 1: Analysis of the system, in: Series in Applied Mathematics, vol. 34, North-Holland, 2002, pp. 69-102. | Zbl
[4] , , , , A model for two coupled turbulent fluids, part 2: Numerical approximation by spectral discretization, SIAM J. Numer. Anal. 40 (2003) 2368-2394. | Zbl
[5] , , , , A model for two coupled turbulent fluids, part 3: Approximation by finite elements, Numer. Math. 98 (2004) 33-66. | Zbl | MR
[6] , , Variability of the tropical atlantic ocean by a general circulation model with two different mixed layer physic, J. Phys. Ocean. 23 (1993) 1363-1388.
[7] , , Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989) 149-169. | Zbl | MR
[8] , Analyse fonctionnelle, seconde ed., Masson, 1993. | Zbl | MR
[9] , , On a first order closure system modelizing turbulent flows, Math. Modelling Numer. Anal. 36 (2002) 345-372. | Zbl | MR | Numdam
[10] , Oscillations due to the transport of microstructures, SIAM J. Appl. Math. 48 (1988) 1128-1146. | Zbl | MR
[11] , , , , , Camassa-Holm equation as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett. 81 (1998) 5338-5341. | Zbl
[12] S. Clain, Analyse mathématique et numérique d'un modèle de chauffage par induction, PhD thesis, École Polytechnique Fédérale de Lausanne, 1994.
[13] , , Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, RAIRO Model. Math. Anal. Numer. 7 (1997) 845-870. | Zbl | MR | Numdam
[14] , Elliptic Boundary Value Problem on Corner Domains: Smoothness and Asymptotics 0, Springer-Verlag, 1988. | Zbl | MR
[15] , A note on the stability functions of the Mellor-Yamada level 2 1/2 turbulence closure model, Bull. Soc. Roy. Sc. Liège 61 (1992) 397-404.
[16] , , Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | Zbl | MR
[17] , , , (Eds.), Buoyant Convection in Geophysical Flows, Kluwer, 1998.
[18] , , Existence of a solution to a coupled elliptic system, Appl. Math. Lett. 2 (1994) 49-55. | Zbl | MR
[19] , , , , , On a turbulent system with unbounded eddy viscosities, J. Nonlinear Anal. 52 (2003) 1051-1068. | Zbl | MR
[20] , , Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986. | Zbl
[21] , Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Pitman, Boston, 1985. | Zbl | MR
[22] , , Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. 51 (1934) 45-78. | MR | JFM | Numdam
[23] , Analyse Mathématique et Océanographie, Masson, 1997.
[24] , The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal. 28 (1997) 393-417. | Zbl
[25] , , Existence and positivity results for the θ-φ model and a modified k-ε model, Math. Models Methods Appl. Sci. 3 (1993) 195-217. | Zbl
[26] R. Lewandowski, G. Pichot, Application of the fictive domain decomposition method and numerical simulations of water flow around a rigid net, 2006, submitted for publication.
[27] P.-L. Lions, F. Murat, Renormalisation des équations elliptiques, 1995.
[28] P.H. Maire, Etude d'une équation de diffusion non linéaire. Application à la discrétisation de l'équation de l'énergie cinétique turbulente pour un modèle de turbulence à une équation, Publications internes du CEA, 2001.
[29] , , Development of turbulence closure model for geophysical fluid problem, Rev. Geophys. Space Phys. 20 (1982) 851-875.
[30] , , Analysis of the k-Epsilon Model, Masson, 1994. | MR
[31] , Local behavior of solutions of quasi linear equations, Acta Math. (1964). | Zbl | MR
[32] , Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, 1966. | Zbl | MR
[33] , Navier Stokes Equations, North-Holland, 1984. | Zbl | MR
Cité par Sources :






