@article{AIHPC_2006__23_2_135_0,
author = {Millot, Vincent},
title = {The relaxed energy for ${S}^{2}$-valued maps and measurable weights},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {135--157},
year = {2006},
publisher = {Elsevier},
volume = {23},
number = {2},
doi = {10.1016/j.anihpc.2005.02.003},
mrnumber = {2201149},
zbl = {05024482},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/}
}
TY - JOUR
AU - Millot, Vincent
TI - The relaxed energy for ${S}^{2}$-valued maps and measurable weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
SP - 135
EP - 157
VL - 23
IS - 2
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/
DO - 10.1016/j.anihpc.2005.02.003
LA - en
ID - AIHPC_2006__23_2_135_0
ER -
%0 Journal Article
%A Millot, Vincent
%T The relaxed energy for ${S}^{2}$-valued maps and measurable weights
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 135-157
%V 23
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.003/
%R 10.1016/j.anihpc.2005.02.003
%G en
%F AIHPC_2006__23_2_135_0
Millot, Vincent. The relaxed energy for ${S}^{2}$-valued maps and measurable weights. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 2, pp. 135-157. doi: 10.1016/j.anihpc.2005.02.003
[1] , A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 269-286. | Zbl | MR | Numdam
[2] , The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991) 153-206. | Zbl | MR
[3] , , Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988) 60-75. | Zbl | MR
[4] , , , Relaxed energies for harmonic maps, in: , , (Eds.), Variational Problems, Birkhäuser, 1990, pp. 37-52. | Zbl | MR
[5] J. Bourgain, H. Brezis, P. Mironescu, -maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation, Publ. Math. Inst. Hautes Etudes Sci., in press. | Zbl | MR | Numdam
[6] H. Brezis, Liquid crystals and energy estimates for -valued maps, in [11].
[7] , , Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983) 203-215. | Zbl | MR
[8] , , , Harmonics maps with defects, Comm. Math. Phys. 107 (1986) 649-705. | Zbl | MR
[9] H. Brezis, P.M. Mironescu, A.C. Ponce, -maps with values into , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE Several Complex Variables, Contemp. Math., AMS, in press. | Zbl | MR
[10] , Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, 1993. | Zbl
[11] , (Eds.), Theory and Applications of Liquid Crystals, IMA Ser., vol. 5, Springer, 1987. | Zbl | MR
[12] , , , Cartesian Currents in the Calculus of Variations, Springer, 1998. | Zbl | MR
[13] V. Millot, Energy with weight for -valued maps with prescribed singularities, Calculus of Variations and PDEs, in press. | Zbl
Cité par Sources :





