@article{AIHPC_2005__22_4_485_0,
author = {Palis, J.},
title = {A global perspective for non-conservative dynamics},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {485--507},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {4},
doi = {10.1016/j.anihpc.2005.01.001},
mrnumber = {2145722},
zbl = {02191851},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.001/}
}
TY - JOUR AU - Palis, J. TI - A global perspective for non-conservative dynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 485 EP - 507 VL - 22 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.001/ DO - 10.1016/j.anihpc.2005.01.001 LA - en ID - AIHPC_2005__22_4_485_0 ER -
%0 Journal Article %A Palis, J. %T A global perspective for non-conservative dynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 485-507 %V 22 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.001/ %R 10.1016/j.anihpc.2005.01.001 %G en %F AIHPC_2005__22_4_485_0
Palis, J. A global perspective for non-conservative dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 485-507. doi: 10.1016/j.anihpc.2005.01.001
[1] , , Nongenericity of Ω-stability, in: Global Analysis, Berkeley 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970. | Zbl
[2] , , , On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR 234 (1977) 336-339. | Zbl | MR
[3] , , The accessible transitions from Morse-Smale systems to systems with several periodic motions, Izv. Akad. Nauk SSSR 38 (1974) 1248-1288. | Zbl | MR
[4] , , On bifurcations of codimension 1, leading to the appearance of fixed points of a countable set of tori, Dokl. Akad. Nauk SSSR 262 (1982) 777-780. | Zbl | MR
[5] , , , SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000) 351-398. | Zbl | MR
[6] , , Some cases of dependence of limit cycles on parameters, Uchen. Zap. Gor'kov. Univ. 6 (1939) 3-24.
[7] , , , , Qualitative Theory of Dynamical Systems of Second Order, Nauka, Moscow, 1966, p. 569. | MR
[8] , , , , The Theory of Bifurcations of Dynamical Systems on the Plane, Nauka, Moscow, 1967, p. 487. | Zbl | MR
[9] , , Systèmes grossiers, Dokl. Akad. Nauk USSR 14 (1937) 247-251. | Zbl
[10] , Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967) 1-235. | Zbl | MR
[11] , , , Possible new strange attractors with spiral structure, Comm. Math. Phys. 79 (1981) 673-679. | Zbl | MR
[12] , Small denominators I: On the mapping of a circle to itself, Izv. Akad. Nauk Math. Ser. 25 (1961) 21-86. | Zbl | MR
[13] , Lectures on bifurcations and versal families, Uspekhi Math. Nauk 27 (1972) 119-184. | Zbl | MR
[14] , Kolmogorov's hydrodynamics attractors. turbulence and stochastic processes: Kolmogorov's ideas 50 years on, Proc. Roy. Soc. London Ser. A 434 (1991) 19-22. | Zbl | MR
[15] , , , , Bifurcation Theory and Catastrophe Theory, Springer, 1999. | Zbl | MR
[16] , , Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré 20 (2003) 805-841. | Numdam | Zbl | MR | EuDML
[17] , , , Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003) 451-550. | Zbl | MR
[18] A. Avila, C.G. Moreira, Phase-parameter relation sharp statistical properties of unimodal maps, Contemp. Math., in press.
[19] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: physical measures, periodic orbits and pathological laminations, Publ. Math. IHES, in press. | Numdam | Zbl | MR | EuDML
[20] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: the quadratic family, Ann. of Math., in press. | Zbl | MR
[21] , , Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative, Astérisque 286 (2003) 81-118. | Zbl | MR | Numdam
[22] , , , , The explosion of singular cycles, Publ. Math. IHES 78 (1993) 207-232. | Numdam | Zbl | MR | EuDML
[23] , , The dynamics of the Hénon map, Ann. of Math. 133 (1991) 73-169. | Zbl | MR
[24] M. Benedicks, M. Viana, Random perturbations and statistical properties of Hénon-like maps, Ann. Inst. H. Poincaré Anal. Non Linéaire. | Numdam | MR | EuDML | Zbl
[25] , , Solution of the basin problem for Hénon-like attractors, Invent. Math. 143 (2001) 375-434. | Zbl | MR
[26] , , SBR-measures for certain Hénon maps, Invent. Math. 112 (1993) 541-576. | Zbl | MR | EuDML
[27] , Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Novi. Lyncaei 1 (1935) 85-216. | Zbl | JFM
[28] , , , Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia Math. Sci., vol. 102, Springer, 2004. | Zbl | MR
[29] , , , A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003) 355-418. | Zbl | MR
[30] , , , , Robust transitivity and heterodimensional cycles, Astérisque 286 (2003) 187-222. | Zbl | MR | Numdam
[31] , , , Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris, Sér. I Math. 325 (1997) 883-888. | Zbl | MR
[32] , , The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181-202. | Zbl | MR | EuDML
[33] , , Stochasticity of the attractor in the Lorenz model, in: Nonlinear Waves, Proc. Winter School, Nauka, Moscow, 1980, pp. 212-226.
[34] , , On non-linear differential equations of the second order, J. London Math. Soc. 20 (1945) 127-153. | Zbl | MR
[35] , , On non-linear differential equations of the second order, Ann. of Math. 48 (1947) 472-494. | Zbl | MR
[36] , Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 539-579. | Numdam | Zbl | MR | EuDML
[37] , , Itérations d'endomorphims et groupe de renormalization, C. R. Acad. Sci. Paris, Sér. I 287 (1978) 577-580. | Zbl | MR
[38] , , Bifurcations and global stability of families of gradients, Publ. Math. IHES 70 (1989) 70-163. | Numdam | Zbl | MR | EuDML
[39] , Structural stability of diffeomorphisms on two-manifolds, Invent. Math. 21 (1973) 233-246. | Zbl | MR | EuDML
[40] , On relaxation oscillations, Philos. Mag. Ser. 7 2 (1926) 978-992. | JFM
[41] , Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory Dynam. Systems 15 (1995) 291-315. | Zbl | MR
[42] , , , Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | Zbl | MR
[43] , , Large measure of hyperbolic dynamics when unfolding heterodimensional cycles, Nonlinearity 10 (1997) 857-884. | Zbl | MR
[44] , On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004) 359-449. | Zbl | MR
[45] , Qualitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978) 25-52. | Zbl | MR
[46] , , Anomalous Anosov Flows. Global Theory of Dynamical Systems, Lecture Notes in Math., vol. 819, Springer, 1980. | Zbl | MR
[47] , , , Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos 6 (1996) 15-31. | Zbl | MR
[48] A. Gorodetski, V. Kaloshin, How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency, in press. | Zbl | MR
[49] , , Generic hyperbolicity in the logistic family, Ann. of Math. 146 (1997) 1-52. | Zbl | MR
[50] , , Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979) 59-72. | Numdam | Zbl | MR | EuDML
[51] , Connecting invariant manifolds and the solution of the stability and Ω-stability conjectures for flows, Ann. of Math. 145 (1997) 81-137. | Zbl | MR
[52] , A two dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976) 69-77. | Zbl | MR
[53] , , Nonlocal Bifurcations, Math. Surveys and Monographs, vol. 66, Amer. Math. Soc., 1999. | MR | Zbl
[54] , On smooth mappings of the circle into itself, Math. USSR-Sb. 14 (1971) 161-185. | Zbl | MR
[55] , Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39-88. | Zbl | MR
[56] V.Yu. Kaloshin, B.R. Hunt, Stretched exponential estimate on growth of the number of periodic points for prevalent diffeomorphisms, in press. | MR | Zbl
[57] , Ergodic Theory of Random Perturbations, Birkhäuser, 1986. | MR
[58] , Random Perturbations of Dynamical Systems, Birkhäuser, 1988. | Zbl | MR
[59] , Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000) 743-762. | Zbl | MR | EuDML
[60] , Axiom A maps are dense in the space of unimodal maps in the topology, Ann. of Math. 157 (2003) 1-43. | MR | Zbl
[61] O. Kozlovski, W. Shen, S. van Strien, Density of hyperbolicity in dimension one, Preprint, Warwick, 2004. | MR | Zbl
[62] O. Kozlovski, S. van Strien, W. Shen, Rigidity for real polynomials, Preprint, Warwick, 2003. | MR | Zbl
[63] , , Stability of singular horseshoes, Topology 25 (1986) 337-352. | Zbl | MR
[64] , Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math. Soc. 32 (244) (1981). | Zbl | MR
[65] , A second order differential equations with singular solutions, Ann. of Math. 50 (1949) 127-153. | Zbl | MR
[66] , Hyperbolicity properties of the non-wandering sets of certain 3-dimensional systems, Acta Math. Sci. 3 (1983) 361-368. | Zbl | MR
[67] , On the stability conjecture, Chinese Ann. of Math. 1 (1980) 9-30. | Zbl | MR
[68] , On non-linear differential equations of the second order, III, Acta Math. 97 (1957) 267-308. | Zbl | MR
[69] , On non-linear differential equations of the second order, IV, Acta Math. 98 (1957) 1-110. | Zbl | MR
[70] , Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963) 130-141.
[71] , Almost every real quadratic map is either regular or stochastic, Ann. of Math. 156 (2002) 1-78. | Zbl | MR
[72] , An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | Zbl | MR
[73] , A proof of the stability conjecture, Publ. Math. IHES 66 (1988) 161-210. | Zbl | MR | Numdam
[74] , , Invariant measures for Lebesgue typical quadratic maps. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque 261 (2001) 239-252. | Zbl | MR | Numdam
[75] , Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459-467.
[76] , Complex Dynamics and Renormalization, Ann. of Math. Stud., vol. 142, Princeton University Press, 1994. | Zbl | MR
[77] , Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 247-276. | Zbl | MR | Numdam
[78] , Stochastic stability for contracting Lorenz maps and flows, Comm. Math. Phys. 212 (2000) 277-296. | Zbl | MR
[79] , , Abundance of strange attractors, Acta Math. 171 (1993) 1-71. | Zbl | MR
[80] , , A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003) 1575-1600. | Zbl | MR
[81] , , , Singular hyperbolic systems, Proc. Amer. Math. Soc. 127 (1999) 3393-3401. | Zbl | MR
[82] , , , Robust transitive singular sets for 3-flows are partially hyperbolic attractors and repellers, Ann. of Math. 160 (2004) 1-58. | Zbl | MR
[83] , , , Homoclinic tangencies and fractal invariants in arbitrary dimension, C. R. Acad. Sci. Paris, Sér. I Math. 333 (2001) 475-480. | Zbl | MR
[84] , , Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math. 154 (2001) 45-96. | Zbl | MR
[85] , Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9-18. | Zbl | MR
[86] , The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES 50 (1979) 101-151. | Zbl | MR | Numdam
[87] , , Cycles and bifurcation theory, Astérisque 31 (1976) 44-140. | Zbl | MR | Numdam
[88] , , , Bifurcations and stability of families of diffeomorphisms, Publ. Math. IHES 57 (1983) 5-71. | Zbl | MR | Numdam
[89] , On Morse-Smale dynamical systems, Topology 8 (1969) 385-405. | Zbl | MR
[90] , A global view of Dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque 261 (1995) 335-347. | Zbl | MR | Numdam
[91] , , Structural stability theorems, in: Global Analysis, Berkeley 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-232. | Zbl | MR
[92] , , Stability of parametrized families of gradient vector fields, Ann. of Math. 118 (1983) 383-421. | Zbl | MR
[93] , , Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms, Invent. Math. 82 (1985) 397-422. | Zbl | MR
[94] , , Hyperbolic and the creation of homoclinic orbits, Ann. of Math. 1987 (1987) 337-374. | Zbl | MR
[95] , , Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. | Zbl | MR
[96] , , High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 140 (1994) 207-250. | Zbl | MR
[97] , , Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math. 172 (1994) 91-136. | Zbl | MR
[98] , , Fers à cheval non uniformément hyperboliques engendrés par une bifurcation homocline et densité nulle des attracteurs, C. R. Acad. Sci. Paris, Sér. I Math. 333 (2001) 867-871. | Zbl | MR
[99] , Structural stability on two-dimensional manifolds, Topology 1 (1962) 101-120. | Zbl | MR
[100] , , Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982) 417-438. | Zbl | MR
[101] E. Pujals, Density of hyperbolicity and homoclinic bifurcation for 3d-diffeomorphisms in attracting regions, IMPA's preprint server, http://www.preprint.impa.br. | MR
[102] , , Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. 151 (2000) 961-1023. | Zbl | MR
[103] , A structural stability theorem, Ann. of Math. 94 (1971) 447-493. | Zbl | MR
[104] , Structural stability of vector fields, Ann. of Math. 99 (1974) 154-175. | Zbl | MR
[105] , Homoclinic bifurcation to a transitive attractor of Lorenz type, Nonlinearity 2 (1989) 495-518. | Zbl | MR
[106] , The dynamics of perturbations of the contracting Lorenz attractor, Bull. Braz. Math. Soc. 24 (1993) 233-259. | Zbl | MR
[107] , A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619-654. | Zbl | MR
[108] , Lorenz attractors through Shil'nikov-type bifurcation. Part 1, Ergodic Theory Dynam. Systems 10 (1990) 793-821. | Zbl | MR
[109] , The stability theorems for discrete dynamical systems on two-dimensional manifolds, Nagoya Math. J. 90 (1983) 1-55. | Zbl | MR
[110] , On the generation of periodic motion from a trajectory doubly asymptotic to an equilibrium state of saddle type, Math. USSR-Sb. 6 (1968) 428-438. | Zbl
[111] , A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc. 34 (1972) 629-630. | Zbl | MR
[112] , Gibbs measures in ergodic theory, Russian Math. Surveys 27 (1972) 21-69. | Zbl | MR
[113] , Diffeomorphisms with many periodic points, in: Differential and Combinatorial Topology, Princeton University Press, 1965. | Zbl | MR
[114] , Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747-817. | Zbl | MR
[115] , Bounds, quadratic differentials and renormalization conjectures, Ann. Math. Soc. Centennial Publ. 2 (1992) 417-466. | Zbl | MR
[116] , , How often do simple dynamical systems have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986) 635-657. | Zbl | MR
[117] M. Tsujii, Physical measures for partially hyperbolic surface endomorphisms, Acta Math., in press. | Zbl | MR
[118] , A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math. 2 (2002) 53-117. | Zbl | MR
[119] , Abundance of hyperbolicity in topology, Ann. Sci. École Norm. Sup. 28 (1995) 747-760. | Zbl | MR | Numdam
[120] C. Vasquez, Statistical stability for diffeomorphisms with dominated splitting, in press. | Zbl
[121] , Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 (1993) 13-62. | Zbl | MR
[122] , Multidimensional nonhyperbolic attractors, Publ. Math. IHES 85 (1997) 63-96. | Zbl | MR | Numdam
[123] , What's new on Lorenz strange attractors?, Math. Intelligencer 22 (2000) 6-19. | Zbl | MR
[124] , Homoclinic tangencies and dominated splittings, Nonlinearity 15 (2002) 1445-1469. | Zbl | MR
[125] , Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. 35 (2004) 419-452. | Zbl | MR
[126] , Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems 6 (1986) 311-319. | Zbl | MR
Cité par Sources :






