@article{AIHPB_2004__40_4_387_0,
author = {Wu, Liming},
title = {Estimate of spectral gap for continuous gas},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {387--409},
year = {2004},
publisher = {Elsevier},
volume = {40},
number = {4},
doi = {10.1016/j.anihpb.2003.11.003},
mrnumber = {2070332},
zbl = {1042.60073},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/}
}
TY - JOUR AU - Wu, Liming TI - Estimate of spectral gap for continuous gas JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 387 EP - 409 VL - 40 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/ DO - 10.1016/j.anihpb.2003.11.003 LA - en ID - AIHPB_2004__40_4_387_0 ER -
%0 Journal Article %A Wu, Liming %T Estimate of spectral gap for continuous gas %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 387-409 %V 40 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/ %R 10.1016/j.anihpb.2003.11.003 %G en %F AIHPB_2004__40_4_387_0
Wu, Liming. Estimate of spectral gap for continuous gas. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 4, pp. 387-409. doi: 10.1016/j.anihpb.2003.11.003
[1] , , On logarithmic Sobolev inequalities for continuous random walks on graphs, Probab. Theory Related Fields 116 (2000) 573-602. | Zbl | MR
[2] , , The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal. 166 (1) (1999) 168-178. | Zbl | MR
[3] , , Correlation, spectral gap and log-Sobolev inequalities for unbounded spin systems, in: Differential Equations and Math. Phys., Amer. Math. Soc, Providence, RI, 2000, pp. 51-66. | Zbl | MR
[4] , , , The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré PR 38 (1) (2002) 91-108. | Zbl | MR | Numdam
[5] , Quasi-factorisation of entropy and log-Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields 120 (2001) 569-584. | Zbl | MR
[6] , , , Entropy inequalities for unbounded spin systems, Ann. Probab. 30 (4) (2000) 1959-1976. | Zbl | MR
[7] , , Nearest neighbor birth and death processes on the real line, Acta Mathematica 140 (1978) 103-154. | Zbl | MR
[8] , Foundations of Modern Probability, Springer-Verlag, 1997. | Zbl | MR
[9] , Lectures on Glauber dynamics for discrete spin models, in: Ecole d'Eté de Saint-Flour (1997), Lect. Notes in Math., vol. 1717, Springer, 1999, pp. 93-191. | Zbl | MR
[10] , Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, Lect. Notes Math., vol. 1755, Springer, 2001, pp. 167-194. | Zbl | MR | Numdam
[11] , Interacting Particle Systems, Springer-Verlag, 1985. | Zbl
[12] , , Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 399-433. | Zbl | MR
[13] Yu. Kondratiev, E. Lytvynov, Glauber dynamics of continuous particle systems, Preprint, 2003.
[14] , Strong ergodicity for Markov processes by coupling method, J. Appl. Probab. 39 (4) (2002) 839-852. | Zbl | MR
[15] , , Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles, Comm. Math. Phys. (2003). | Zbl
[16] , Formule de dualité sur l'espace de Poisson, Ann. Inst. H. Poincaré (Prob. Stat.) 32 (4) (1996) 509-548. | Zbl | MR | Numdam
[17] , Statistical Mechanics: Rigorous Results, Benjamin, 1969. | Zbl | MR
[18] , , The equivalence between the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys. 144 (1992) 303-323. | Zbl
[19] , , The logarithmic Sobolev inequality for discrete spin systems on the lattice, Comm. Math. Phys. 149 (1992) 175-193. | Zbl | MR
[20] , On the multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Stat. 3 (1984) 217-239. | Zbl | MR
[21] , A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theory Related Fields 118 (2000) 427-438. | Zbl | MR
[22] , Uniqueness of Nelson's diffusions, Probab. Theory Related Fields 114 (1999) 549-585. | Zbl | MR
[23] , The equivalence of the logarithmic Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré (Prob. Stat.) 37 (2001) 223-243. | Zbl | MR | Numdam
Cité par Sources :





