[Actions du cercle et variétés]
We establish an S1-equivariant index theorem for Dirac operators on -manifolds. As an application, we generalize the Atiyah–Hirzebruch vanishing theorem for S1-actions on closed spin manifolds to the case of -manifolds.
On établit un théorème d'indice S1-équivariant pour les opérateurs de Dirac sur des variétés. On donne une application de ce résultat, qui généralise le théorème d'Atiyah–Hirzebruch sur les actions de S1 aux variétés.
Accepté le :
Publié le :
Zhang, Weiping 1
@article{CRMATH_2003__337_1_57_0,
author = {Zhang, Weiping},
title = {Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds},
journal = {Comptes Rendus. Math\'ematique},
pages = {57--60},
year = {2003},
publisher = {Elsevier},
volume = {337},
number = {1},
doi = {10.1016/S1631-073X(03)00279-6},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S1631-073X(03)00279-6/}
}
TY - JOUR
AU - Zhang, Weiping
TI - Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds
JO - Comptes Rendus. Mathématique
PY - 2003
SP - 57
EP - 60
VL - 337
IS - 1
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/S1631-073X(03)00279-6/
DO - 10.1016/S1631-073X(03)00279-6
LA - en
ID - CRMATH_2003__337_1_57_0
ER -
Zhang, Weiping. Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds. Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 57-60. doi: 10.1016/S1631-073X(03)00279-6
[1] Spin manifolds and groups actions (Haefliger, A.; Narasimhan, R., eds.), Essays on Topology and Related Topics, Mémoirée dédié à Georges de Rham, Springer-Verlag, 1970, pp. 18-28
[2] Spectral asymmetry and Riemannian geometry I, Proc. Cambridge Philos. Soc., Volume 77 (1975), pp. 43-69
[3] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[4] Real embeddings and eta invariant, Math. Ann., Volume 295 (1993), pp. 661-684
[5] Real embeddings and the Atiyah–Patodi–Singer index theorem for Dirac operators, Asian J. Math., Volume 4 (2000), pp. 775-794
[6] -manifolds and families of Dirac operators, Invent. Math., Volume 92 (1988), pp. 243-254
[7] A mod k index theorem, Invent. Math., Volume 107 (1992), pp. 283-299
[8] Rigidity and vanishing theorems in K-theory, Comm. Anal. Geom., Volume 11 (2003), pp. 121-180
[9] Quantization formula for symplectic manifolds with boundary, Geom. Funct. Anal., Volume 9 (1999), pp. 596-640
[10] Fermion quantum numbers in Kaluza–Klein theory (Jackiw, R. et al., eds.), Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field theory and the Fundamental Problems of Physics, MIT Press, 1985, pp. 227-277
Cité par Sources :





