[Formes normales uniques des champs de vecteurs de type Hopf-zéro]
We consider normal forms of Hopf-zero vector fields in . Unique normal forms under conjugacy and orbital equivalence for the generic case are given.
Nous étudions l'unicité des formes normales de champs de vecteurs de type Hopf-zéro dans . Des formes normales uniques dans le cas générique sont données par rapport aux changements de coordonnées et pour l'équivalence orbitale.
Accepté le :
Publié le :
Chen, Guoting 1 ; Wang, Duo 2 ; Yang, Jiazhong 2
@article{CRMATH_2003__336_4_345_0,
author = {Chen, Guoting and Wang, Duo and Yang, Jiazhong},
title = {Unique normal forms for {Hopf-zero} vector fields},
journal = {Comptes Rendus. Math\'ematique},
pages = {345--348},
year = {2003},
publisher = {Elsevier},
volume = {336},
number = {4},
doi = {10.1016/S1631-073X(03)00043-8},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S1631-073X(03)00043-8/}
}
TY - JOUR AU - Chen, Guoting AU - Wang, Duo AU - Yang, Jiazhong TI - Unique normal forms for Hopf-zero vector fields JO - Comptes Rendus. Mathématique PY - 2003 SP - 345 EP - 348 VL - 336 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(03)00043-8/ DO - 10.1016/S1631-073X(03)00043-8 LA - en ID - CRMATH_2003__336_4_345_0 ER -
%0 Journal Article %A Chen, Guoting %A Wang, Duo %A Yang, Jiazhong %T Unique normal forms for Hopf-zero vector fields %J Comptes Rendus. Mathématique %D 2003 %P 345-348 %V 336 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(03)00043-8/ %R 10.1016/S1631-073X(03)00043-8 %G en %F CRMATH_2003__336_4_345_0
Chen, Guoting; Wang, Duo; Yang, Jiazhong. Unique normal forms for Hopf-zero vector fields. Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 345-348. doi: 10.1016/S1631-073X(03)00043-8
[1] Unique normal forms for vector fields and Hamiltonians, J. Differential Equations, Volume 78 (1989), pp. 33-52
[2] G. Chen, D. Wang, J. Yang, Unique orbital normal forms for Hopf-zero vector fields, Preprint, 2002
[3] On finite determinacy of formal vector fields, Invent. Math., Volume 70 (1982), pp. 45-52
[4] Linear grading function and further reduction of normal forms, J. Differential Equations, Volume 132 (1996), pp. 293-318
[5] J. Lamb, M.A. Teixeira, J. Yang, On the Hamiltonian structure of normal forms for elliptic equilibria of reversible vector fields in , Preprint, 2002
[6] The simplest normal form for the singularity of a pure imaginary and a zero eigenvalue, Dyn. Cont. Disc. Impul. Syst. Ser. B, Appl. and Algorithms, Volume 8 (2001), pp. 219-249
Cité par Sources :





