[Non-dégénérescence de l'algèbre de Lie ]
We show that , the Lie algebra of affine transformations of is formally and analytically nondegenerate in the sense of A. Weinstein. This means that every analytic (resp., formal) Poisson structure vanishing at a point with a linear part corresponding to is locally analytically (resp., formally) linearizable.
Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s'annule en un point et dont la partie linéaire correspond à l'algèbre des transformations affines sur , est localement analytiquement (resp., formellement) linéarisable.
Accepté le :
Publié le :
Dufour, Jean-Paul 1 ; Zung, Nguyen Tien 2
@article{CRMATH_2002__335_12_1043_0,
author = {Dufour, Jean-Paul and Zung, Nguyen Tien},
title = {Nondegeneracy of the {Lie} algebra $ \mathfrak{aff}\mathrm{(n)}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1043--1046},
year = {2002},
publisher = {Elsevier},
volume = {335},
number = {12},
doi = {10.1016/S1631-073X(02)02599-2},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/}
}
TY - JOUR
AU - Dufour, Jean-Paul
AU - Zung, Nguyen Tien
TI - Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$
JO - Comptes Rendus. Mathématique
PY - 2002
SP - 1043
EP - 1046
VL - 335
IS - 12
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/
DO - 10.1016/S1631-073X(02)02599-2
LA - en
ID - CRMATH_2002__335_12_1043_0
ER -
%0 Journal Article
%A Dufour, Jean-Paul
%A Zung, Nguyen Tien
%T Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$
%J Comptes Rendus. Mathématique
%D 2002
%P 1043-1046
%V 335
%N 12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S1631-073X(02)02599-2/
%R 10.1016/S1631-073X(02)02599-2
%G en
%F CRMATH_2002__335_12_1043_0
Dufour, Jean-Paul; Zung, Nguyen Tien. Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1043-1046. doi: 10.1016/S1631-073X(02)02599-2
[1] Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988
[2] Normal forms for analytic Poisson structures, Ann. of Math. (2), Volume 119 (1984) no. 3, pp. 577-601
[3] Normal forms for smooth Poisson structures, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 565-593
[4] Linéarisation de certaines structures de Poisson, J. Differential Geom., Volume 32 (1990) no. 2, pp. 415-428
[5] Une nouvelle famille d'algèbres de Lie non dégénérées, Indag. Math. (N.S.), Volume 6 (1995) no. 1, pp. 67-82
[6] J.-C. Molinier, Linéarisation de structures de Poisson, Thèse, Montpellier, 1993
[7] Levi decomposition of smooth Poisson structures, Preprint, 2002 | arXiv
[8] Normalisation formelle de structures de Poisson, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997) no. 5, pp. 531-536
[9] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557
[10] Levi decomposition of analytic Poisson structures and Lie algebroids, Preprint, 2002 | arXiv
Cité par Sources :





