Local block bootstrap
[Bloc re-échantillonnage local]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 959-962

For time series that are not stationary, the block bootstrap method is not directly applicable. However, if the underlying stochastic structure is slowly changing with time, one may employ a local block-resampling procedure. We define such a procedure, and give an example of its applicability.

Pour les séries chronologiques qui ne sont pas stationnaires, la méthode de bloc re-échantillonnage n'est pas directement applicable. Cependant, si la structure stochastique fondamentale change lentement, on peut utiliser une méthode de bloc re-échantillonnage local. Nous définissons une telle procédure et donnons un exemple de son applicabilité.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02578-5

Paparoditis, Efstathios 1 ; Politis, Dimitris N. 2

1 Department of Mathematics and Statistics, University of Cyprus, PO Box 20537, Nicosia, Cyprus
2 Department of Mathematics, University of California–San Diego, La Jolla, CA 92093-0112, USA
@article{CRMATH_2002__335_11_959_0,
     author = {Paparoditis, Efstathios and Politis, Dimitris N.},
     title = {Local block bootstrap},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {959--962},
     year = {2002},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     doi = {10.1016/S1631-073X(02)02578-5},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02578-5/}
}
TY  - JOUR
AU  - Paparoditis, Efstathios
AU  - Politis, Dimitris N.
TI  - Local block bootstrap
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 959
EP  - 962
VL  - 335
IS  - 11
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/S1631-073X(02)02578-5/
DO  - 10.1016/S1631-073X(02)02578-5
LA  - en
ID  - CRMATH_2002__335_11_959_0
ER  - 
%0 Journal Article
%A Paparoditis, Efstathios
%A Politis, Dimitris N.
%T Local block bootstrap
%J Comptes Rendus. Mathématique
%D 2002
%P 959-962
%V 335
%N 11
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S1631-073X(02)02578-5/
%R 10.1016/S1631-073X(02)02578-5
%G en
%F CRMATH_2002__335_11_959_0
Paparoditis, Efstathios; Politis, Dimitris N. Local block bootstrap. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 959-962. doi: 10.1016/S1631-073X(02)02578-5

[1] Dahlhaus, R. On the Kullback–Leibler information divergence of locally stationary processes, Stochastic Process. Appl, Volume 62 (1996), pp. 139-168

[2] Dahlhaus, R. Fitting time series models to nonstationary processes, Ann. Statist, Volume 25 (1997), pp. 1-37

[3] Künsch, H.R. The Jackknife and the bootstrap for general stationary observations, Ann. Statist, Volume 17 (1989), pp. 1217-1241

[4] Politis, D.N.; Romano, J.P.; Wolf, M. Subsampling, Springer, New York, 1999

[5] Priestley, M.B. Non-Linear and Non-Stationary Time Series Analysis, Academic Press, London, 1988

[6] Roussas, G.G.; Tran, L.T.; Ioannides, D.A. Fixed design regression for time series: asymptotic normality, J. Multivariate Anal, Volume 40 (1992), pp. 262-291

[7] Shi, S.G. Local bootstrap, Ann. Inst. Statist. Math, Volume 43 (1991), pp. 667-676

Cité par Sources :