[Inversion exacte d'une transformation conique de Radon composée et nouveau principe d'imagerie nucléaire]
A new integral transform arising from a theory of imaging based on Compton scattering is introduced and the explicit expression for its inverse is established. Its properties serve as foundation to a new nuclear emission imaging principle.
Une nouvelle transformation intégrale issue de la formation d'image à partir des photons diffusés par effet Compton a été établie. Sa formule d'inversion explicite a été démontrée. Ses propriétés servent de fondement à un nouveau principe d'imagerie nucléaire.
Accepté le :
Publié le :
Nguyen, Mai K. 1 ; Truong, Tuong T. 2
@article{CRMATH_2002__335_2_213_0,
author = {Nguyen, Mai K. and Truong, Tuong T.},
title = {Exact inversion of a compound conical {Radon} transform and a novel nuclear imaging principle},
journal = {Comptes Rendus. Math\'ematique},
pages = {213--217},
year = {2002},
publisher = {Elsevier},
volume = {335},
number = {2},
doi = {10.1016/S1631-073X(02)02453-6},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02453-6/}
}
TY - JOUR AU - Nguyen, Mai K. AU - Truong, Tuong T. TI - Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle JO - Comptes Rendus. Mathématique PY - 2002 SP - 213 EP - 217 VL - 335 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02453-6/ DO - 10.1016/S1631-073X(02)02453-6 LA - en ID - CRMATH_2002__335_2_213_0 ER -
%0 Journal Article %A Nguyen, Mai K. %A Truong, Tuong T. %T Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle %J Comptes Rendus. Mathématique %D 2002 %P 213-217 %V 335 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(02)02453-6/ %R 10.1016/S1631-073X(02)02453-6 %G en %F CRMATH_2002__335_2_213_0
Nguyen, Mai K.; Truong, Tuong T. Exact inversion of a compound conical Radon transform and a novel nuclear imaging principle. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 213-217. doi: 10.1016/S1631-073X(02)02453-6
[1] Radon's problem for some surfaces in , Proc. Amer. Math. Soc., Volume 99 (1987) no. 2, pp. 305-312
[2] Towards direct reconstruction from a gamma-camera based on Compton scattering, IEEE Trans. Med. Imag., Volume 13 (1994) no. 2, pp. 398-407
[3] Transformation de Fourier des Pseudo-fonctions avec Tables de Nouvelles Transformées, CNRS, Paris, 1963
[4] Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, New York, 1966
[5] Apparent image formation by Compton scattered photons in gamma-ray imaging, IEEE Signal Processing Lett., Volume 8 (2001) no. 9, pp. 248-251
[6] On an integral transform and its inverse in nuclear imaging, Inverse Problems, Volume 18 (2002) no. 2, pp. 265-277
[7] Radon Transformation on Real Algebraic Varieties (Gindikin, S.; Michor, P., eds.), Proceedings of the Conference “75 Years of Radon Transform”, International Press, Boston, 1994, pp. 252-262
[8] Über die Bestimmung von Funktionnen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Natur. Kl., Volume 69 (1917), pp. 262-277
Cité par Sources :





