[Résultats de régularité pour les fluides électrorhéologiques : le cas stationnaire]
We report on some regularity results for weak solutions to systems modelling electrorheological fluids in the stationary case, as proposed in [8].
On prouve des résultats de régularité pour les solutions faibles de systèmes modélisant les fluides électrorhéologiques dans le cas stationnaire, utilisant le modèle introduit dans [8].
Accepté le :
Publié le :
Acerbi, Emilio 1 ; Mingione, Giuseppe 1
@article{CRMATH_2002__334_9_817_0,
author = {Acerbi, Emilio and Mingione, Giuseppe},
title = {Regularity results for electrorheological fluids: the stationary case},
journal = {Comptes Rendus. Math\'ematique},
pages = {817--822},
year = {2002},
publisher = {Elsevier},
volume = {334},
number = {9},
doi = {10.1016/S1631-073X(02)02337-3},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02337-3/}
}
TY - JOUR AU - Acerbi, Emilio AU - Mingione, Giuseppe TI - Regularity results for electrorheological fluids: the stationary case JO - Comptes Rendus. Mathématique PY - 2002 SP - 817 EP - 822 VL - 334 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02337-3/ DO - 10.1016/S1631-073X(02)02337-3 LA - en ID - CRMATH_2002__334_9_817_0 ER -
%0 Journal Article %A Acerbi, Emilio %A Mingione, Giuseppe %T Regularity results for electrorheological fluids: the stationary case %J Comptes Rendus. Mathématique %D 2002 %P 817-822 %V 334 %N 9 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(02)02337-3/ %R 10.1016/S1631-073X(02)02337-3 %G en %F CRMATH_2002__334_9_817_0
Acerbi, Emilio; Mingione, Giuseppe. Regularity results for electrorheological fluids: the stationary case. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 817-822. doi: 10.1016/S1631-073X(02)02337-3
[1] Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal., Volume 156 (2001) no. 2, pp. 121-140
[2] E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Rational Mech. Anal. (to appear)
[3] Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris, Volume 328 (1999), pp. 363-368
[4] Weak and Measure Valued Solutions to Evolution Partial Differential Equations, Appl. Math. Math. Comput., 13, Chapman and Hall, 1996
[5] Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., Volume 105 (1989), pp. 267-284
[6] Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa, Volume 23 (1996), pp. 1-25
[7] Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn., Volume 13 (2001) no. 1, pp. 59-78
[8] Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer, 2000
[9] Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, Volume 329 (1999), pp. 393-398
[10] Flow of shear dependent electrorheological fluids: unsteady space periodic case (Sequeira, A., ed.), Appl. Nonlinear Anal., Plenum Press, 1999, pp. 485-504
[11] Meyers-type estimates for solving the nonlinear Stokes system, Differential Equations, Volume 33 (1997), pp. 107-114
Cité par Sources :





