@article{AIHPC_2003__20_6_1043_0,
author = {Schn\"urer, Oliver C and Smoczyk, Knut},
title = {Neumann and second boundary value problems for hessian and {Gau{\ss}} curvature flows},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1043--1073},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {6},
doi = {10.1016/S0294-1449(03)00021-0},
mrnumber = {2008688},
zbl = {1032.53058},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/}
}
TY - JOUR AU - Schnürer, Oliver C AU - Smoczyk, Knut TI - Neumann and second boundary value problems for hessian and Gauß curvature flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 1043 EP - 1073 VL - 20 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ DO - 10.1016/S0294-1449(03)00021-0 LA - en ID - AIHPC_2003__20_6_1043_0 ER -
%0 Journal Article %A Schnürer, Oliver C %A Smoczyk, Knut %T Neumann and second boundary value problems for hessian and Gauß curvature flows %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 1043-1073 %V 20 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ %R 10.1016/S0294-1449(03)00021-0 %G en %F AIHPC_2003__20_6_1043_0
Schnürer, Oliver C; Smoczyk, Knut. Neumann and second boundary value problems for hessian and Gauß curvature flows. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 6, pp. 1043-1073. doi: 10.1016/S0294-1449(03)00021-0
[1] , Gauß curvature flow, The shape of the rolling stones, Invent. Math. 138 (1999) 151-161. | Zbl | MR
[2] , , , Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988) 47-70. | Zbl | MR
[3] , , A logarithmic Gauß curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Analyse Non Linéaire 17 (6) (2000) 733-751. | Zbl | MR | Numdam
[4] , Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1) (1985) 117-138. | Zbl | MR
[5] , , The free boundary in the Gauß curvature flow with flat sides, J. Reine Angew. Math. 510 (1999) 187-227. | Zbl | MR
[6] , Shapes of worn stones, Mathematica 21 (1974) 1-11. | Zbl | MR
[7] C. Gerhardt, Existenz für kleine Zeiten bei Neumann Randbedingungen, Lecture Notes.
[8] , Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J. 49 (2000) 1125-1153. | Zbl | MR
[9] , Hypersurfaces of prescribed Weingarten curvature, Math. Z. 224 (1997) 167-194. | Zbl | MR
[10] , , Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983, xiii+513 pp. | Zbl | MR
[11] , , Estimation of the second derivatives on the boundary for surfaces evolving under the action of their principal curvatures, Algebra i Analiz 9 (1997) 30-50, (in Russian). Translation in , St. Petersburg Math. J. 9 (1998) 199-217. | Zbl | MR
[12] , , , Linear and Quasilinear Equations of Parabolic Type, (in Russian). Translated from the Russian by S. Smith , Transl. Math. Monographs, 23, American Mathematical Society, Providence, RI, 1967, xi+648 pp. | Zbl | MR
[13] , Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996, xii+439 pp. | Zbl | MR
[14] , , , The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39 (1986) 539-563. | Zbl | MR
[15] , The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z. 242 (2002) 159-181. | Zbl | MR
[16] , Weingarten hypersurfaces with prescribed gradient image, Math. Z. 240 (2002) 53-82. | Zbl | MR
[17] , The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations 26 (2001) 859-882. | Zbl | MR
[18] , Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. Partial Differential Equations 7 (1998) 19-39. | Zbl | MR
[19] , On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math. 487 (1997) 115-124. | Zbl | MR
Cité par Sources :






