@article{AIHPC_2003__20_5_759_0,
author = {Cerami, Giovanna and Molle, Riccardo},
title = {Multiple positive solutions for singularly perturbed elliptic problems in exterior domains},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {759--777},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {5},
doi = {10.1016/S0294-1449(02)00030-6},
mrnumber = {1995501},
zbl = {01975933},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/}
}
TY - JOUR AU - Cerami, Giovanna AU - Molle, Riccardo TI - Multiple positive solutions for singularly perturbed elliptic problems in exterior domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 759 EP - 777 VL - 20 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/ DO - 10.1016/S0294-1449(02)00030-6 LA - en ID - AIHPC_2003__20_5_759_0 ER -
%0 Journal Article %A Cerami, Giovanna %A Molle, Riccardo %T Multiple positive solutions for singularly perturbed elliptic problems in exterior domains %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 759-777 %V 20 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(02)00030-6/ %R 10.1016/S0294-1449(02)00030-6 %G en %F AIHPC_2003__20_5_759_0
Cerami, Giovanna; Molle, Riccardo. Multiple positive solutions for singularly perturbed elliptic problems in exterior domains. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 5, pp. 759-777. doi: 10.1016/S0294-1449(02)00030-6
[1] , , On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (3) (1997) 365-413. | Zbl | MR | Numdam
[2] , , On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Rev. Mat. Iberoamericana 6 (1-2) (1990) 1-15. | Zbl | MR
[3] , , Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987) 283-300. | Zbl | MR
[4] , , Existence of positive solutions of the equation −Δu+a(x)u=u(N+2)/(N−2) in RN, J. Funct. Anal. 88 (1) (1990) 90-117. | Zbl
[5] , , Nonlinear scalar fields equations - I. Existence of a ground-state, Arch. Rational Mech. Anal. 82 (1983) 313-346. | Zbl | MR
[6] , , Multiple positive solutions for a singularly perturbed Dirichlet problem in “geometrically trivial” domains, Topol. Methods Nonlin. Anal. 19 (1) (2002) 63-76. | Zbl
[7] , , Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with “rich” topology, Nonlinear Analysis TMA 18 (2) (1992) 109-119. | Zbl
[8] , , Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis TMA 24 (11) (1995) 1533-1547. | Zbl | MR
[9] G. Cerami, D. Passaseo, Effect of concentrating potentials in some singularly perturbed problems, Calculus of Variations and PDE, to appear. | Zbl | MR
[10] , , , Symmetry of positive solutions of nonlinear elliptic equations in RN, in: Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, 7-A, Academic Press, 1981, pp. 369-402. | Zbl | MR
[11] , , Nonlinear elliptic Dirichlet problems in exterior domains: the role of geometry and topology of the domain, Comm. Appl. Nonlinear Anal. 2 (2) (1995) 1-31. | Zbl | MR
[12] , Uniqueness of positive solutions of Δu−u+up=0, Arch. Rational Mech. Anal. 105 (1989) 243-266. | Zbl
[13] , , , Positive solutions for a class of nonlinear elliptic problems in RN, Proc. Roy. Soc. Edinburgh Sect. A 130 (1) (2000) 141-166. | Zbl | MR
[14] , , On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains, Discrete Contin. Dynam. Systems 4 (3) (1998) 445-454. | Zbl | MR
[15] , , Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal. Ser. A: Theory Methods 39 (4) (2000) 447-462. | Zbl | MR
[16] , Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | Zbl | MR
[17] , Variational Methods - Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. | Zbl | MR
Cité par Sources :





