@article{AIHPC_2003__20_4_705_0,
author = {Andre, Nelly and Bauman, Patricia and Phillips, Dan},
title = {Vortex pinning with bounded fields for the {Ginzburg-Landau} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {705--729},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {4},
doi = {10.1016/S0294-1449(02)00021-5},
zbl = {1040.35108},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/}
}
TY - JOUR AU - Andre, Nelly AU - Bauman, Patricia AU - Phillips, Dan TI - Vortex pinning with bounded fields for the Ginzburg-Landau equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 705 EP - 729 VL - 20 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ DO - 10.1016/S0294-1449(02)00021-5 LA - en ID - AIHPC_2003__20_4_705_0 ER -
%0 Journal Article %A Andre, Nelly %A Bauman, Patricia %A Phillips, Dan %T Vortex pinning with bounded fields for the Ginzburg-Landau equation %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 705-729 %V 20 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ %R 10.1016/S0294-1449(02)00021-5 %G en %F AIHPC_2003__20_4_705_0
Andre, Nelly; Bauman, Patricia; Phillips, Dan. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729. doi: 10.1016/S0294-1449(02)00021-5
[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. | MR
[2] , The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3-4) (1991) 153-206. | Zbl | MR
[3] , , , A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114. | Zbl | MR
[4] , , Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407. | Zbl | MR
[5] , , The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | Zbl | MR
[6] , , Vortices Monopoles, Birkhäuser, 1980. | Zbl | MR
[7] , Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | Zbl | MR
[8] , , Ginzburg-Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385. | Zbl | MR
[9] , , Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684. | Zbl | MR
[10] , Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.
[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. | Zbl | MR | Numdam
[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. | Zbl | MR
[13] , , Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263. | Zbl | MR
[14] , , Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268. | Zbl | MR
Cité par Sources :





