@article{AIHPC_2003__20_2_271_0,
author = {Cingolani, Silvia and Vannella, Giuseppina},
title = {Critical groups computations on a class of {Sobolev} {Banach} spaces via {Morse} index},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {271--292},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {2},
doi = {10.1016/S0294-1449(02)00011-2},
mrnumber = {1961517},
zbl = {1023.58004},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/}
}
TY - JOUR AU - Cingolani, Silvia AU - Vannella, Giuseppina TI - Critical groups computations on a class of Sobolev Banach spaces via Morse index JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 271 EP - 292 VL - 20 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/ DO - 10.1016/S0294-1449(02)00011-2 LA - en ID - AIHPC_2003__20_2_271_0 ER -
%0 Journal Article %A Cingolani, Silvia %A Vannella, Giuseppina %T Critical groups computations on a class of Sobolev Banach spaces via Morse index %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 271-292 %V 20 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(02)00011-2/ %R 10.1016/S0294-1449(02)00011-2 %G en %F AIHPC_2003__20_2_271_0
Cingolani, Silvia; Vannella, Giuseppina. Critical groups computations on a class of Sobolev Banach spaces via Morse index. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 2, pp. 271-292. doi: 10.1016/S0294-1449(02)00011-2
[1] , , Critical points for multiple integrands of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996) 249-274. | Zbl | MR
[2] , , , , Solitons in several space dimensions: a Derrick's problem and infinitely many solutions, Arch. Rat. Mech. Anal. 154 (2000) 297-324. | Zbl | MR
[3] , , , Soliton-like solutions of a Lorentz invariant equation in dimension 3, Math. Phys. 3 (1998) 315-344. | Zbl | MR
[4] , Morse theory on Banach space and its applications to partial differential equations, Chin. Ann. of Math. 4B (1983) 381-399. | Zbl | MR
[5] , Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993. | Zbl | MR
[6] , Morse theory in nonlinear analysis, in: , , (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, Word Scientific, Singapore, 1998. | Zbl | MR
[7] , , Some results on critical groups for a class of functionals defined on Sobolev Banach spaces, Rend. Acc. Naz. Lincei 12 (2001) 1-5. | Zbl | MR | EuDML
[8] , , Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Differential Equations 136 (1997) 268-293. | MR | Zbl
[9] , C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA 7 (1983) 827-850. | Zbl
[10] , Existence an nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104 (1988) 57-77. | Zbl | MR
[11] , , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998. | Zbl
[12] , On lower semicontinuity of integral functionals I and II, SIAM J. Control Optim. 15 (1977) 521-538, and 991-1000. | Zbl | MR
[13] , , Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | Zbl | MR
[14] , Morse index estimates for continuous functionals associated with quasilinear elliptic equations, Adv. Differential Equations 7 (2002) 99-128. | Zbl | MR
[15] , , Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. | Zbl | MR
[16] , , Problems in extending Morse theory to Banach spaces, Boll. UMI 12 (1975) 397-401. | Zbl | MR
[17] , Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340. | Zbl | MR
[18] , Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math. 80 (1964) 382-396. | Zbl | MR
[19] , Algebraic Topology, McGraw-Hill, New York, 1966. | Zbl | MR
[20] , Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. | Zbl | MR
[21] , On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Part. Differential Equations 8 (1983) 773-817. | Zbl | MR
[22] , A general approach to Morse theory, J. Differential Geom. 12 (1977) 47-85. | Zbl | MR
[23] , Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972) 430-445. | Zbl | MR
Cité par Sources :





