@article{AIHPB_2003__39_4_593_0,
author = {Geiger, Jochen and Kersting, G\"otz and Vatutin, Vladimir A.},
title = {Limit theorems for subcritical branching processes in random environment},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {593--620},
year = {2003},
publisher = {Elsevier},
volume = {39},
number = {4},
doi = {10.1016/S0246-0203(02)00020-1},
zbl = {1038.60083},
language = {en},
url = {https://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/}
}
TY - JOUR AU - Geiger, Jochen AU - Kersting, Götz AU - Vatutin, Vladimir A. TI - Limit theorems for subcritical branching processes in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 593 EP - 620 VL - 39 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/ DO - 10.1016/S0246-0203(02)00020-1 LA - en ID - AIHPB_2003__39_4_593_0 ER -
%0 Journal Article %A Geiger, Jochen %A Kersting, Götz %A Vatutin, Vladimir A. %T Limit theorems for subcritical branching processes in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 593-620 %V 39 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0246-0203(02)00020-1/ %R 10.1016/S0246-0203(02)00020-1 %G en %F AIHPB_2003__39_4_593_0
Geiger, Jochen; Kersting, Götz; Vatutin, Vladimir A. Limit theorems for subcritical branching processes in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 4, pp. 593-620. doi: 10.1016/S0246-0203(02)00020-1
[1] V.I. Afanasyev, Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU, 1980.
[2] , Limit theorems for a moderately subcritical branching process in a random environment, Discrete Math. Appl. 8 (1998) 35-52. | Zbl | MR
[3] , Bounds on the extinction time distribution of a branching process, Adv. Appl. Probab. 6 (1974) 322-335. | Zbl | MR
[4] , , On branching processes with random environments: I, II, Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858. | Zbl
[5] , , Branching Processes, Springer, New York, 1972. | Zbl | MR
[6] , , On conditioning a random walk to stay positive, Ann. Probab. 22 (1994) 2152-2167. | Zbl | MR
[7] , On the survival probability of a branching process in a finite state i.i.d. environment, Stochastic Processes Appl. 27 (1988) 151-157. | Zbl | MR
[8] , On the asymptotic behaviour of first passage times for transient random walk, Probab. Theory Related Fields 81 (1989) 239-246. | Zbl | MR
[9] , , On the survival probability of a branching process in a random environment, Adv. Appl. Probab. 29 (1997) 38-55. | Zbl | MR
[10] , An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. | Zbl | MR
[11] , , Reduced subcritical Galton-Watson processes in a random environment, Adv. Appl. Probab. 31 (1999) 88-111. | Zbl
[12] , Elementary new proofs of classical limit theorems for Galton-Watson processes, J. Appl. Probab. 36 (1999) 301-309. | Zbl
[13] , , The survival probability of a critical branching process in random environment, Teor. Verojatnost. i Primenen. 45 (2000) 607-615. | Zbl | MR
[14] , , Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris Sér. I Math. 332 (4) (2001) 339-344. | Zbl | MR
[15] , Determination of the limiting coefficient for exponential functionals of random walks with positive drift, J. Math. Sci. Univ. Tokyo 5 (1998) 299-332. | Zbl | MR
[16] , Foundations of Modern Probability, Springer, New York, 1997. | Zbl | MR
[17] , On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Probab. Appl. 21 (1976) 791-804. | Zbl | MR
[18] , On the survival probability of a branching process in a random environment, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 1-10. | Zbl | MR | Numdam
[19] , , On branching processes in random environments, Ann. Math. Stat. 40 (1969) 814-827. | Zbl | MR
[20] , , The exponential rate of convergence of the distribution of the maximum of a random walk. Part II, J. Appl. Probab. 13 (1976) 733-740. | Zbl | MR
Cité par Sources :






