@article{ASENS_2003_4_36_2_173_0,
author = {Arnaud, Marie-Claude},
title = {Approximation des ensembles $\omega $-limites des diff\'eomorphismes par des orbites p\'eriodiques},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {173--190},
year = {2003},
publisher = {Elsevier},
volume = {4e s{\'e}rie, 36},
number = {2},
doi = {10.1016/S0012-9593(03)00006-5},
zbl = {1024.37011},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/}
}
TY - JOUR AU - Arnaud, Marie-Claude TI - Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 173 EP - 190 VL - 36 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/ DO - 10.1016/S0012-9593(03)00006-5 LA - fr ID - ASENS_2003_4_36_2_173_0 ER -
%0 Journal Article %A Arnaud, Marie-Claude %T Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 173-190 %V 36 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0012-9593(03)00006-5/ %R 10.1016/S0012-9593(03)00006-5 %G fr %F ASENS_2003_4_36_2_173_0
Arnaud, Marie-Claude. Approximation des ensembles $\omega $-limites des difféomorphismes par des orbites périodiques. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 173-190. doi: 10.1016/S0012-9593(03)00006-5
[1] , Le “closing lemma” en topologie C1, Mem. Soc. Math. Fr, Nouv. Série 74 (1998). | Zbl | Numdam
[2] , Un lemme de fermeture d'orbites : le “orbit closing lemma”, C.R.A.S., Ser. I 323 (1996) 1175-1178. | Zbl
[3] , Création de connexions en topologie C1, Ergodic Theory Dynam. Systems 21 (2001) 1-43. | Zbl | MR
[4] Arnaud M.-C., The generic symplectic C1-diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely periodic point, Ergodic Theory Dynam. Systems, à paraître. | Zbl
[5] , Création de points périodiques de tous types au voisinage des tores K.A.M, Bull. Soc. Math. France 123 (1995) 591-603. | Zbl | MR | Numdam
[6] Bonatti C., Diaz L., Pujals E., A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, preprint. | MR
[7] , , Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. Ecole Norm. Sup. 32 (1999) 135-150. | Zbl | MR | Numdam
[8] , , Partially hyperbolic dynamical systems, Math. USSR Izvestija 8 (1974) 177-218. | Zbl
[9] , Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl
[10] , Hyperbolicity, stability and the creation of homoclinic points, Documenta Mathematica, Extra Vol. ICM II (1998) 789-796. | Zbl | MR | EuDML
[11] , (Ed.), Topologie, 1992. | Zbl | MR
[12] , An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | Zbl | MR
[13] Morales C.A., Pacifico M.-J., Lyapunov stability of generic ω-limit sets, preprint.
[14] , Diffeomorphisms with infinitely many sinks, Topology 12 (1974) 9-18. | Zbl | MR
[15] , Quasi-elliptic points in conservative dynamical systems, Amer. J. Math. 99 (1977) 1081-1087. | Zbl | MR
[16] , , The C1 closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983) 261-314. | Zbl | MR
[17] , Stabilité globale des systèmes dynamiques, Astérisque 56 (1978). | Zbl | MR | Numdam
[18] , Homoclinic points in symplectic and volume preserving diffeomorphisms, Comm. Math. Phys. 117 (1996) 435-449. | Zbl | MR
Cité par Sources :






