@article{PMIHES_2024__139__1_0,
author = {Clozel, Laurent and Gelander, Tsachik and Reid, Alan and Venkatesh, Akshay and Wise, Daniel and Boucksom, S\'ebastien},
title = {Hommage \`a {Nicolas} {Bergeron}},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--11},
year = {2024},
publisher = {Springer International Publishing},
address = {Cham},
volume = {139},
doi = {10.1007/s10240-024-00149-7},
mrnumber = {4750568},
zbl = {1542.01023},
language = {fr},
url = {https://www.numdam.org/articles/10.1007/s10240-024-00149-7/}
}
TY - JOUR AU - Clozel, Laurent AU - Gelander, Tsachik AU - Reid, Alan AU - Venkatesh, Akshay AU - Wise, Daniel AU - Boucksom, Sébastien TI - Hommage à Nicolas Bergeron JO - Publications Mathématiques de l'IHÉS PY - 2024 SP - 1 EP - 11 VL - 139 PB - Springer International Publishing PP - Cham UR - https://www.numdam.org/articles/10.1007/s10240-024-00149-7/ DO - 10.1007/s10240-024-00149-7 LA - fr ID - PMIHES_2024__139__1_0 ER -
%0 Journal Article %A Clozel, Laurent %A Gelander, Tsachik %A Reid, Alan %A Venkatesh, Akshay %A Wise, Daniel %A Boucksom, Sébastien %T Hommage à Nicolas Bergeron %J Publications Mathématiques de l'IHÉS %D 2024 %P 1-11 %V 139 %I Springer International Publishing %C Cham %U https://www.numdam.org/articles/10.1007/s10240-024-00149-7/ %R 10.1007/s10240-024-00149-7 %G fr %F PMIHES_2024__139__1_0
Clozel, Laurent; Gelander, Tsachik; Reid, Alan; Venkatesh, Akshay; Wise, Daniel; Boucksom, Sébastien. Hommage à Nicolas Bergeron. Publications Mathématiques de l'IHÉS, Tome 139 (2024), pp. 1-11. doi: 10.1007/s10240-024-00149-7
[ABBG23.] Convergence of normalized Betti numbers in nonpositive curvature, Duke Math. J., Volume 172 (2023), pp. 633-700 | MR | Zbl | DOI
[A+11.] On the growth of Betti numbers of locally symmetric spaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 831-835 | MR | DOI | Zbl
[A+12.] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault and I. Samet, On the growth of -invariants for sequences of lattices in Lie groups. Preprint, | arXiv | MR
[A+17.] On the growth of -invariants for sequences of lattices in Lie groups, Ann. Math. (2), Volume 185 (2017), pp. 711-790 | MR | Zbl | DOI
[A+20.] On the growth of -invariants of locally symmetric spaces, II : exotic invariant random subgroups in rank one, Int. Math. Res. Not., Volume 9 (2020), pp. 2588-2625 | MR | Zbl | DOI
[Ber00.] N. Bergeron, Cycles géodésiques dans les variétés hyperboliques, Thèse, 2000
[Ber03.] Lefschetz properties for arithmetic real and complex hyperbolic manifolds, Int. Math. Res. Not., Volume 20 (2003), pp. 1089-1122 | MR | DOI | Zbl
[Ber04.] Produits dans la cohomologie des variétés de Shimura : quelques calculs, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 751-756 | MR | DOI | Zbl
[Ber06.] N. Bergeron, Propriétés de Lefschetz automorphes pour les groupes unitaires et orthogonaux, Mém. Soc. Math. Fr., 106 (2006). | MR | Numdam
[Ber18.] N. Bergeron, Hodge theory and cycle theory of locally symmetric spaces, in Proc. Int. Cong. of Math. 2018, vol. 2, pp. 849–876, Rio de Janeiro. | MR
[BCG23.] N. Bergeron, P. Charollois and L. E. Garcia, Elliptic units for complex cubic fields. Preprint, | arXiv
[BC05.] Spectre Automorphe des Variétés Hyperboliques et Applications Topologiques, 2005 | MR | Zbl | Numdam
[BC13.] Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math., Volume 192 (2013), pp. 505-532 | MR | Zbl
[BC17.] Sur la cohomologie des variétés hyperboliques de dimension 7 trialitaires, Isr. J. Math., Volume 222 (2017), pp. 333-400 | DOI | MR | Zbl
[BG04.] A note on local rigidity, Geom. Dedic., Volume 107 (2004), pp. 111-131 | MR | Zbl | DOI
[BSV16.] Torsion homology growth and cycle complexity of arithmetic manifolds, Duke Math. J., Volume 265 (2016), pp. 1629-1693 | MR | Zbl
[BV13.] The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu, Volume 12 (2013), pp. 391-447 | MR | Zbl | DOI
[SG10.] Uniformisation des Surfaces de Riemann, ENS. Éditions, Lyon, 2010 | MR | Zbl
Cité par Sources :





