Article
Ancient solutions and translators of Lagrangian mean curvature flow
Publications Mathématiques de l'IHÉS, Tome 140 (2024), pp. 1-35

Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in 𝐂 n . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in 𝐂 2 , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-023-00143-5
@article{PMIHES_2024__140__1_0,
     author = {Lotay, Jason D. and Schulze, Felix and Sz\'ekelyhidi, G\'abor},
     title = {Ancient solutions and translators of {Lagrangian} mean curvature flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--35},
     year = {2024},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {140},
     doi = {10.1007/s10240-023-00143-5},
     mrnumber = {4824746},
     zbl = {1560.53077},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-023-00143-5/}
}
TY  - JOUR
AU  - Lotay, Jason D.
AU  - Schulze, Felix
AU  - Székelyhidi, Gábor
TI  - Ancient solutions and translators of Lagrangian mean curvature flow
JO  - Publications Mathématiques de l'IHÉS
PY  - 2024
SP  - 1
EP  - 35
VL  - 140
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-023-00143-5/
DO  - 10.1007/s10240-023-00143-5
LA  - en
ID  - PMIHES_2024__140__1_0
ER  - 
%0 Journal Article
%A Lotay, Jason D.
%A Schulze, Felix
%A Székelyhidi, Gábor
%T Ancient solutions and translators of Lagrangian mean curvature flow
%J Publications Mathématiques de l'IHÉS
%D 2024
%P 1-35
%V 140
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-023-00143-5/
%R 10.1007/s10240-023-00143-5
%G en
%F PMIHES_2024__140__1_0
Lotay, Jason D.; Schulze, Felix; Székelyhidi, Gábor. Ancient solutions and translators of Lagrangian mean curvature flow. Publications Mathématiques de l'IHÉS, Tome 140 (2024), pp. 1-35. doi: 10.1007/s10240-023-00143-5

[1.] Bogachev, V. I. Gaussian Measures, 62, Am. Math. Soc., Providence, 1998 | MR | Zbl | DOI

[2.] Brendle, S. Ancient solutions to the Ricci flow in dimension 3, Acta Math., Volume 225 (2020), pp. 1-102 | MR | Zbl | DOI

[3.] Brendle, S.; Choi, K. Uniqueness of convex ancient solutions to mean curvature flow in 𝐑 3 , Invent. Math., Volume 217 (2019), pp. 35-76 | MR | Zbl | DOI

[4.] Choi, K.; Haslhofer, R.; Hershkovits, O. Ancient low entropy flows, mean convex neighborhoods, and uniqueness, Acta Math., Volume 228 (2022), pp. 217-301 | MR | Zbl | DOI

[5.] Choi, K.; Haslhofer, R.; Hershkovits, O.; White, B. Ancient asymptotically cylindrical flows and applications, Invent. Math., Volume 229 (2022), pp. 139-241 | MR | Zbl | DOI

[6.] Colding, T. H.; Minicozzi, W. P. II. Harmonic functions with polynomial growth, J. Differ. Geom., Volume 46 (1997), pp. 1-77 | MR | Zbl | DOI

[7.] Colding, T. H.; Minicozzi, W. P. II. Generic mean curvature flow I: generic singularities, Ann. Math. (2), Volume 175 (2012), pp. 755-833 | MR | Zbl | DOI

[8.] Colding, T. H.; Minicozzi, W. P. II. Complexity of parabolic systems, Publ. Math. Inst. Hautes Études Sci., Volume 132 (2020), pp. 83-135 | MR | Numdam | Zbl | DOI

[9.] Colding, T. H.; Minicozzi, W. P. Parabolic frequency on manifolds, Int. Math. Res. Not., Volume 2022 (2022), pp. 11878-11890 | MR | Zbl | DOI

[10.] Daskalopoulos, P.; Hamilton, R.; Sesum, N. Classification of compact ancient solutions to the curve shortening flow, J. Differ. Geom., Volume 84 (2010), pp. 455-464 | MR | Zbl | DOI

[11.] Ding, Y. An existence theorem of harmonic functions with polynomial growth, Proc. Am. Math. Soc., Volume 132 (2004), pp. 543-551 | MR | Zbl | DOI

[12.] Donaldson, S.; Sun, S. Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differ. Geom., Volume 107 (2017), pp. 327-371 | MR | Zbl | DOI

[13.] Ecker, K. Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | MR | Zbl

[14.] Ecker, K. Regularity Theory for Mean Curvature Flow, 57, Birkhäuser Boston, Boston, 2004 | MR | Zbl | DOI

[15.] Ecker, K.; Huisken, G. Mean curvature evolution of entire graphs, Ann. Math. (2), Volume 130 (1989), pp. 453-471 | MR | Zbl | DOI

[16.] Fukaya, K. Galois symmetry on Floer cohomology, Turk. J. Math., Volume 27 (2003), pp. 11-32 | MR | Zbl

[17.] Hamilton, R. S. Harnack estimate for the mean curvature flow, J. Differ. Geom., Volume 41 (1995), pp. 215-226 | MR | Zbl | DOI

[18.] Huisken, G. Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990), pp. 285-299 | MR | Zbl | DOI

[19.] Ilmanen, T.; Neves, A.; Schulze, F. On short time existence for the planar network flow, J. Differ. Geom., Volume 111 (2019), pp. 39-89 | MR | Zbl | DOI

[20.] Joyce, D. Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow, EMS Surv. Math. Sci., Volume 2 (2015), pp. 1-62 | MR | Zbl | DOI

[21.] Joyce, D.; Lee, Y.-I.; Tsui, M.-P. Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differ. Geom., Volume 84 (2010), pp. 127-161 | MR | Zbl | DOI

[22.] Lambert, B.; Lotay, J. D.; Schulze, F. Ancient solutions in Lagrangian mean curvature flow, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (2021), pp. 1169-1205 | MR | Zbl

[23.] Neves, A. Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., Volume 168 (2007), pp. 449-484 | MR | Zbl | DOI

[24.] Neves, A. Recent Progress on Singularities of Lagrangian Mean Curvature Flow, Surveys in Geometric Analysis and Relativity, 20, Int. Press, Somerville, 2011, pp. 413-438 | MR | Zbl

[25.] Simon, L. Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2), Volume 118 (1983), pp. 525-571 | MR | Zbl | DOI

[26.] K. Smoczyk, A canonical way to deform a Lagrangian submanifold, | arXiv

[27.] Thomas, R. P. Moment maps, monodromy and mirror manifolds, Symplectic Geometry and Mirror Symmetry (2001), pp. 467-498 | MR | Zbl | DOI

[28.] Thomas, R. P.; Yau, S.-T. Special Lagrangians, stable bundles and mean curvature flow, Commun. Anal. Geom., Volume 10 (2002), pp. 1075-1113 | MR | Zbl | DOI

Cité par Sources :