Article
The p-widths of a surface
Publications Mathématiques de l'IHÉS, Tome 137 (2023), pp. 245-342

The p-widths of a closed Riemannian manifold are a nonlinear analogue of the spectrum of its Laplace–Beltrami operator, which corresponds to areas of a certain min-max sequence of possibly singular minimal submanifolds. We show that the p-widths of any closed Riemannian two-manifold correspond to a union of closed immersed geodesics, rather than simply geodesic nets.

We then prove optimality of the sweepouts of the round two-sphere constructed from the zero set of homogeneous polynomials, showing that the p-widths of the round sphere are attained by p great circles. As a result, we find the universal constant in the Liokumovich–Marques–Neves–Weyl law for surfaces to be π.

En route to calculating the p-widths of the round two-sphere, we prove two additional new results: a bumpy metrics theorem for stationary geodesic nets with fixed edge lengths, and that, generically, stationary geodesic nets with bounded mass and bounded singular set have Lusternik–Schnirelmann category zero.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-023-00141-7
@article{PMIHES_2023__137__245_0,
     author = {Chodosh, Otis and Mantoulidis, Christos},
     title = {The p-widths of a surface},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {245--342},
     year = {2023},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {137},
     doi = {10.1007/s10240-023-00141-7},
     zbl = {1533.58015},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-023-00141-7/}
}
TY  - JOUR
AU  - Chodosh, Otis
AU  - Mantoulidis, Christos
TI  - The p-widths of a surface
JO  - Publications Mathématiques de l'IHÉS
PY  - 2023
SP  - 245
EP  - 342
VL  - 137
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-023-00141-7/
DO  - 10.1007/s10240-023-00141-7
LA  - en
ID  - PMIHES_2023__137__245_0
ER  - 
%0 Journal Article
%A Chodosh, Otis
%A Mantoulidis, Christos
%T The p-widths of a surface
%J Publications Mathématiques de l'IHÉS
%D 2023
%P 245-342
%V 137
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-023-00141-7/
%R 10.1007/s10240-023-00141-7
%G en
%F PMIHES_2023__137__245_0
Chodosh, Otis; Mantoulidis, Christos. The p-widths of a surface. Publications Mathématiques de l'IHÉS, Tome 137 (2023), pp. 245-342. doi: 10.1007/s10240-023-00141-7

[AA76.] Allard, W. K.; Almgren, F. J. Jr. The structure of stationary one dimensional varifolds with positive density, Invent. Math., Volume 34 (1976), pp. 83-97 | MR | Zbl | DOI

[Aie19.] Aiex, N. S. The width of ellipsoids, Commun. Anal. Geom., Volume 27 (2019), pp. 251-285 | MR | Zbl | DOI

[Alm62.] Almgren, F. J. Jr. The homotopy groups of the integral cycle groups, Topology, Volume 1 (1962), pp. 257-299 | MR | Zbl | DOI

[Ban93.] Bangert, V. On the existence of closed geodesics on two-spheres, Int. J. Math., Volume 4 (1993), pp. 1-10 | MR | Zbl | DOI

[Bel20.] C. Bellettini, Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature, Comm. Pure Appl. Math., | arXiv

[Bel22.] Bellettini, C. Generic existence of multiplicity-1 minmax minimal hypersurfaces via Allen-Cahn, Calc. Var. Partial Differ. Equ., Volume 61 (2022) | MR | Zbl | DOI

[Bir17.] Birkhoff, G. D. Dynamical systems with two degrees of freedom, Trans. Am. Math. Soc., Volume 18 (1917), pp. 199-300 | MR | Zbl | DOI

[Bre13a.] Brendle, S. Embedded minimal tori in S 3 and the Lawson conjecture, Acta Math., Volume 211 (2013), pp. 177-190 | MR | Zbl | DOI

[Bre13b.] Brendle, S. Minimal surfaces in S 3 : a survey of recent results, Bull. Math. Sci., Volume 3 (2013), pp. 133-171 | MR | Zbl | DOI

[CC92.] Calabi, E.; Guo Cao, J. Simple closed geodesics on convex surfaces, J. Differ. Geom., Volume 36 (1992), pp. 517-549 | MR | Zbl | DOI

[CDL03.] Colding, T. H.; De Lellis, C. The min-max construction of minimal surfaces, Surveys in Differential Geometry, Vol. VIII, Volume 8 (2003), pp. 75-107 | Zbl | DOI

[CGGM22.] Caju, R.; Gaspar, P.; Guaraco, M. A. M.; Matthiesen, H. Ground states of semilinear elliptic problems with applications to the Allen-Cahn equation on the sphere, Calc. Var. Partial Differ. Equ., Volume 61 (2022) | MR | Zbl | DOI

[CKM17.] Chodosh, O.; Ketover, D.; Maximo, D. Minimal hypersurfaces with bounded index, Invent. Math., Volume 209 (2017), pp. 617-664 | MR | Zbl | DOI

[CLS22.] Chodosh, O.; Liokumovich, Y.; Spolaor, L. Singular behavior and generic regularity of min-max minimal hypersurfaces, Ars Inven. Anal., Volume 2 (2022), p. 27 | MR | Zbl

[CM08.] Colding, T. H.; Minicozzi, W. P. II. Width and mean curvature flow, Geom. Topol., Volume 12 (2008), pp. 2517-2535 | MR | Zbl | DOI

[CM20.] Chodosh, O.; Mantoulidis, C. Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math., Volume 191 (2020), pp. 213-328 | MR | Zbl | DOI

[CZ21.] Cheng, D. R.; Zhou, X. Existence of curves with constant geodesic curvature in a Riemannian 2-sphere, Trans. Am. Math. Soc., Volume 374 (2021), pp. 9007-9028 | MR | Zbl | DOI

[Dey22.] Dey, A. A comparison of the Almgren-Pitts and the Allen-Cahn min-max theory, Geom. Funct. Anal., Volume 32 (2022), pp. 980-1040 | MR | Zbl | DOI

[DLP10.] De Lellis, C.; Pellandini, F. Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., Volume 644 (2010), pp. 47-99 | MR | Zbl

[DLT13.] De Lellis, C.; Tasnady, D. The existence of embedded minimal hypersurfaces, J. Differ. Geom., Volume 95 (2013), pp. 355-388 | MR | Zbl | DOI

[dPKP13.] del Pino, M.; Kowalczyk, M.; Pacard, F. Moduli space theory for the Allen-Cahn equation in the plane, Trans. Am. Math. Soc., Volume 365 (2013), pp. 721-766 | MR | Zbl | DOI

[dPKPW10.] del Pino, M.; Kowalczyk, M.; Pacard, F.; Wei, J. Multiple-end solutions to the Allen-Cahn equation in 𝐑 2 , J. Funct. Anal., Volume 258 (2010), pp. 458-503 | MR | Zbl | DOI

[dPKW08.] del Pino, M.; Kowalczyk, M.; Wei, J. The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Ration. Mech. Anal., Volume 190 (2008), pp. 141-187 | MR | Zbl | DOI

[dPKWY10.] del Pino, M.; Kowalczyk, M.; Wei, J.; Yang, J. Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature, Geom. Funct. Anal., Volume 20 (2010), pp. 918-957 | MR | Zbl | DOI

[FLP13.] Fokas, A. S.; Lenells, J.; Pelloni, B. Boundary value problems for the elliptic sine-Gordon equation in a semi-strip, J. Nonlinear Sci., Volume 23 (2013), pp. 241-282 | MR | Zbl | DOI

[FP12.] Fokas, A. S.; Pelloni, B. The Dirichlet-to-Neumann map for the elliptic sine-Gordon equation, Nonlinearity, Volume 25 (2012), pp. 1011-1031 | MR | Zbl | DOI

[Fra92.] Franks, J. Geodesics on S 2 and periodic points of annulus homeomorphisms, Invent. Math., Volume 108 (1992), pp. 403-418 | MR | Zbl | DOI

[FT07.] Faddeev, L. D.; Takhtajan, L. A. Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 2007 (English edition. Translated from the 1986 Russian original by Alexey G. Reyman) | Zbl | MR

[Gas20.] Gaspar, P. The second inner variation of energy and the Morse index of limit interfaces, J. Geom. Anal., Volume 30 (2020), pp. 69-85 | MR | Zbl | DOI

[GG18.] Gaspar, P.; Guaraco, M. A. M. The Allen-Cahn equation on closed manifolds, Calc. Var. Partial Differ. Equ., Volume 57 (2018) | MR | Zbl | DOI

[GG19.] Gaspar, P.; Guaraco, M. A. M. The Weyl law for the phase transition spectrum and density of limit interfaces, Geom. Funct. Anal., Volume 29 (2019), pp. 382-410 | MR | Zbl | DOI

[GL90.] Gutshabash, E. S.; Lipovskiĭ, V. D. A boundary value problem for a two-dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect, Zap. Nauč. Semin. LOMI, Vopr. Kvantovoj Teor. Polâ Stat. Fiz., Volume 9 (1990), pp. 53-62 (179) | MR | Zbl

[GLW16.] Gui, C.; Liu, Y.; Wei, J. On variational characterization of four-end solutions of the Allen-Cahn equation in the plane, J. Funct. Anal., Volume 271 (2016), pp. 2673-2700 | MR | Zbl | DOI

[Gra89.] Grayson, M. A. Shortening embedded curves, Ann. Math, Volume 129 (1989), pp. 71-111 | MR | Zbl | DOI

[Gro88.] Gromov, M. Dimension, nonlinear spectra and width, Geometric Aspects of Functional Analysis (1986/87), 1317, Springer, Berlin, 1988, pp. 132-184 | MR | Zbl | DOI

[Gro03.] Gromov, M. Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., Volume 13 (2003), pp. 178-215 | MR | Zbl | DOI

[Gro09.] Gromov, M. Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal., Volume 19 (2009), pp. 743-841 | MR | Zbl | DOI

[Gua18.] Guaraco, M. A. M. Min–max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differ. Geom., Volume 108 (2018), pp. 91-133 | MR | Zbl

[Gua19.] Guaraco, M. A. M. Min-Max for the Allen–Cahn Equation and Other Topics, 2019 (http://math.uchicago.edu/~guaraco/princeton2019.pdf)

[Gui12.] Changfeng, G. Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5853-5874 | MR | Zbl | DOI

[Gut09.] Guth, L. Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal., Volume 18 (2009), pp. 1917-1987 | MR | Zbl | DOI

[Gut13.] Guth, L. Unexpected applications of polynomials in combinatorics, The Mathematics of Paul Erdős. I, Springer, New York, 2013, pp. 493-522 | MR | DOI

[Gut16.] Guth, L. Polynomial Methods in Combinatorics, 64, Am. Math. Soc., Providence, 2016 | Zbl | MR | DOI

[Hep99.] Heppes, A. On the partition of the 2-sphere by geodesic nets, Proc. Am. Math. Soc., Volume 127 (1999), pp. 2163-2165 | MR | Zbl | DOI

[Hie18.] Hiesmayr, F. Spectrum and index of two-sided Allen-Cahn minimal hypersurfaces, Commun. Partial Differ. Equ., Volume 43 (2018), pp. 1541-1565 | MR | Zbl | DOI

[Hie20.] F. Hiesmayr, Rigidity of low index solutions on S 3 via a Frankel theorem for the Allen-Cahn equation, | arXiv

[Hin93.] Hingston, N. On the growth of the number of closed geodesics on the two-sphere, Int. Math. Res. Not., Volume 9 (1993), pp. 253-262 | MR | Zbl | DOI

[Hir04.] Hirota, R. The Direct Method in Soliton Theory, 155, Cambridge University Press, Cambridge, 2004 (Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson, with a foreword by Jarmo Hietarinta and Nimmo) | Zbl | MR | DOI

[HK19.] Haslhofer, R.; Ketover, D. Minimal 2-spheres in 3-spheres, Duke Math. J., Volume 168 (2019), pp. 1929-1975 | MR | Zbl | DOI

[HM96.] Hass, J.; Morgan, F. Geodesic nets on the 2-sphere, Proc. Am. Math. Soc., Volume 124 (1996), pp. 3843-3850 | MR | Zbl | DOI

[HT00.] Hutchinson, J. E.; Tonegawa, Y. Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differ. Equ., Volume 10 (2000), pp. 49-84 | MR | Zbl | DOI

[IMN18.] Irie, K.; Marques, F.; Neves, A. Density of minimal hypersurfaces for generic metrics, Ann. Math., Volume 187 (2018), pp. 963-972 | MR | Zbl | DOI

[IT16a.] Ivanov, A. O.; Tuzhilin, A. A. Analytic deformations of minimal networks, Fundam. Prikl. Mat., Volume 21 (2016), pp. 159-180 | Zbl | MR

[IT16b.] Ivanov, A. O.; Tuzhilin, A. A. Minimal networks: a review, Advances in Dynamical Systems and Control, 69, Springer, Cham, 2016, pp. 43-80 | MR | Zbl | DOI

[Jos89.] Jost, J. A nonparametric proof of the theorem of Lusternik and Schnirelman, Arch. Math. (Basel), Volume 53 (1989), pp. 497-509 | MR | Zbl | DOI

[Kap11.] Kapouleas, N. Doubling and desingularization constructions for minimal surfaces, Surveys in Geometric Analysis and Relativity, 20, Int. Press, Somerville, 2011, pp. 281-325 | Zbl | MR

[Ket19.] Ketover, D. Genus bounds for min-max minimal surfaces, J. Differ. Geom., Volume 112 (2019), pp. 555-590 | MR | Zbl | DOI

[KL19.] D. Ketover and Y. Liokumovich, On the existence of closed C 1,1 curves of constant curvature, 2019. | MR

[Kli78.] Klingenberg, W. Lectures on Closed Geodesics, 230, Springer, Berlin, 1978 | Zbl | MR | DOI

[KLP12a.] Kowalczyk, M.; Liu, Y.; Pacard, F. The space of 4-ended solutions to the Allen-Cahn equation in the plane, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012), pp. 761-781 | MR | Zbl | Numdam | DOI

[KLP12b.] Kowalczyk, M.; Liu, Y.; Pacard, F. Towards classification of multiple-end solutions to the Allen-Cahn equation in 𝐑 2 , Netw. Heterog. Media, Volume 7 (2012), pp. 837-855 | MR | Zbl | DOI

[KLP13.] Kowalczyk, M.; Liu, Y.; Pacard, F. The classification of four-end solutions to the Allen-Cahn equation on the plane, Anal. PDE, Volume 6 (2013), pp. 1675-1718 | MR | Zbl | DOI

[KLPW15.] Kowalczyk, M.; Liu, Y.; Pacard, F.; Wei, J. End-to-end construction for the Allen-Cahn equation in the plane, Calc. Var. Partial Differ. Equ., Volume 52 (2015), pp. 281-302 | MR | Zbl | DOI

[KLS19.] D. Ketover, Y. Liokumovich and A. Song, On the existence of minimal Heegaard surfaces, | arXiv

[KMN20.] Ketover, D.; Marques, F. C.; Neves, A. The catenoid estimate and its geometric applications, J. Differ. Geom., Volume 115 (2020), pp. 1-26 | MR | Zbl | DOI

[KW20.] Kapouleas, N.; Wiygul, D. The index and nullity of the Lawson surfaces ξ g,1 , Camb. J. Math., Volume 8 (2020), pp. 363-405 | MR | Zbl | DOI

[Lan99.] Lang, S. Fundamentals of Differential Geometry, 191, Springer, New York, 1999 | Zbl | MR | DOI

[Law70.] Blaine Lawson, H. Jr. Complete minimal surfaces in S 3 , Ann. Math., Volume 92 (1970), pp. 335-374 | MR | Zbl | DOI

[Li19.] Y. Li, Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics, J. Differential Geom., | arXiv | MR

[Li20.] Y. Li, An improved Morse index bound of min-max minimal hypersurfaces, | arXiv

[Lio16.] Liokumovich, Y. Families of short cycles on Riemannian surfaces, Duke Math. J., Volume 165 (2016), pp. 1363-1379 | MR | Zbl | DOI

[LMN18.] Liokumovich, Y.; Marques, F.; Neves, A. Weyl law for the volume spectrum, Ann. Math., Volume 187 (2018), pp. 933-961 | MR | Zbl | DOI

[LS47.] Lyusternik, L.; Snirel’man, L. Topological methods in variational problems and their application to the differential geometry of surfaces, Usp. Mat. Nauk, Volume 2(1(17)) (1947), pp. 166-217 | MR | Zbl

[LS21.] Y. Liokumovich and B. Staffa, Generic density of geodesic nets, 2021.

[Lus47.] Lusternik, L. Topology of functional spaces and calculus of variations in the large, Trav. Inst. Math. Steklov, Volume 19 (1947), p. 100 | MR | Zbl

[LW20.] Y. Li and Z. Wang, Generic regularity of minimal hypersurfaces in dimension 8, | arXiv

[LW22.] Liu, Y.; Wei, J. Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane, Rev. Mat. Iberoam., Volume 38 (2022), pp. 355-432 | MR | Zbl | DOI

[Man21.] Mantoulidis, C. Allen-Cahn min-max on surfaces, J. Differ. Geom., Volume 117 (2021), pp. 93-135 | MR | Zbl | DOI

[Mat15.] MathOverflow, Explicit eigenvalues of the Laplacian, 2015, https://mathoverflow.net/questions/219109/explicit-eigenvalues-of-the-laplacian. Accessed 19 July 2021.

[MMN20.] F. C. Marques, R. Montezuma and A. Neves, Morse inequalities for the area functional, J. Differential Geom., | arXiv | MR

[MN14.] Marques, F. C.; Neves, A. Min-max theory and the Willmore conjecture, Ann. Math., Volume 179 (2014), pp. 683-782 | MR | Zbl | DOI

[MN16.] Marques, F. C.; Neves, A. Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., Volume 4 (2016), pp. 463-511 | MR | Zbl | DOI

[MN17.] Marques, F. C.; Neves, A. Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., Volume 209 (2017), pp. 577-616 | MR | Zbl | DOI

[MN21.] Marques, F. C.; Neves, A. Morse index of multiplicity one min-max minimal hypersurfaces, Adv. Math., Volume 378 (2021) | MR | Zbl | DOI

[MNS19.] Marques, F. C.; Neves, A.; Song, A. Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., Volume 216 (2019), pp. 421-443 | MR | Zbl | DOI

[Mor96.] Marston, M. The Calculus of Variations in the Large, 18, Am. Math. Soc., Providence, 1996 (Reprint of the 1932 original) | Zbl | MR

[MR16.] Michelat, A.; Rivière, T. A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., Volume 22 (2016), pp. 1282-1324 | MR | Zbl | Numdam | DOI

[NP20.] Nabutovsky, A.; Parsch, F. Geodesic Nets: Some Examples and Open Problems, 2020, pp. 1-25 | Zbl | MR

[NR04.] Nabutovsky, A.; Rotman, R. Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal., Volume 14 (2004), pp. 748-790 | MR | Zbl | DOI

[NR07.] Nabutovsky, A.; Rotman, R. Shapes of geodesic nets, Geom. Topol., Volume 11 (2007), pp. 1225-1254 | MR | Zbl | DOI

[NS97.] Novokshenov, V. Yu.; Shagalov, A. G. Bound states of the elliptic sine-Gordon equation, Physica D, Volume 106 (1997), pp. 81-94 | MR | Zbl | DOI

[Nur16.] C. Nurser, Low min-max widths of the round three-sphere, PhD thesis, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, 2016.

[Par19.] F. Parsch, Geodesic Nets with Few Boundary Points, ProQuest LLC, Ann Arbor, MI Ph.D. Thesis, University of Toronto (Canada), Ann Arbor (2019). | MR

[Pel09.] Pelloni, B. Spectral analysis of the elliptic sine-Gordon equation in the quarter plane, Teor. Mat. Fiz., Volume 160 (2009), pp. 189-201 | MR | Zbl | DOI

[Pit81.] Pitts, J. T. Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, 27, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1981 | Zbl | MR | DOI

[Poi05.] Poincaré, H. Sur les lignes géodésiques des surfaces convexes, Trans. Am. Math. Soc., Volume 6 (1905), pp. 237-274 | Zbl | MR

[PP10.] Pelloni, B.; Pinotsis, D. A. The elliptic sine-Gordon equation in a half plane, Nonlinearity, Volume 23 (2010), pp. 77-88 | MR | Zbl | DOI

[PR20a.] Pigati, A.; Rivière, T. A proof of the multiplicity 1 conjecture for min-max minimal surfaces in arbitrary codimension, Duke Math. J., Volume 169 (2020), pp. 2005-2044 | MR | Zbl | DOI

[PR20b.] Pigati, A.; Rivière, T. The regularity of parametrized integer stationary varifolds in two dimensions, Commun. Pure Appl. Math., Volume 73 (2020), pp. 1981-2042 | MR | Zbl | DOI

[PS21.] Pigati, A.; Stern, D. Minimal submanifolds from the Abelian Higgs model, Invent. Math., Volume 223 (2021), pp. 1027-1095 | MR | Zbl | DOI

[Riv17.] Tristan, R. A viscosity method in the min-max theory of minimal surfaces, Publ. Math. Inst. Hautes Études Sci., Volume 126 (2017), pp. 177-246 | MR | Zbl | Numdam | DOI

[Riv21.] Tristan, R. Lower semi-continuity of the index in the viscosity method for minimal surfaces, Int. Math. Res. Not., Volume 8 (2021), pp. 5651-5675 | MR | Zbl

[RL19.] A. Ramírez-Luna, Orientability of min-max hypersurfaces in manifolds of positive Ricci curvature, | arXiv

[Rot07.] Rotman, R. The length of a shortest geodesic net on a closed Riemannian manifold, Topology, Volume 46 (2007), pp. 343-356 | MR | Zbl | DOI

[Sim83.] Simon, L. Lectures on Geometric Measure Theory, 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983 | Zbl | MR

[Sma65.] Smale, S. An infinite dimensional version of Sard’s theorem, Am. J. Math., Volume 87 (1965), pp. 861-866 | MR | Zbl | DOI

[Smi82.] F. Smith, On the existence of embedded minimal two spheres in the three sphere, endowed with an arbitrary Riemannian metric, Ph.D. Thesis, University of Melbourne, Supervisor: Leon Simon, 1982.

[Son19.] A. Song, A dichotomy for minimal hypersurfaces in manifolds thick at infinity, Ann. Sci. Ec. Norm. Supér. (2019), to appear. | MR

[Son23.] Song, A. Existence of infinitely many minimal hypersurfaces in closed manifolds, Ann. Math., Volume 197 (2023), pp. 859-895 | MR | Zbl | DOI

[SS81.] Schoen, R.; Simon, L. Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., Volume 34 (1981), pp. 741-797 | MR | Zbl | DOI

[Sta21.] B. Staffa, Bumpy Metrics Theorem for Geodesic Nets, 2021.

[SZ21.] Song, A.; Zhou, X. Generic scarring for minimal hypersurfaces along stable hypersurfaces, Geom. Funct. Anal., Volume 31 (2021), pp. 948-980 | MR | Zbl | DOI

[Tai92.] Taimanov, I. A. On the existence of three nonintersecting closed geodesics on manifolds that are homeomorphic to the two-dimensional sphere, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 56 (1992), pp. 605-635 | Zbl | MR

[Tau80.] Taubes, C. H. On the equivalence of the first and second order equations for gauge theories, Commun. Math. Phys., Volume 75 (1980), pp. 207-227 | MR | Zbl | DOI

[Ton05.] Tonegawa, Y. On stable critical points for a singular perturbation problem, Commun. Anal. Geom., Volume 13 (2005), pp. 439-459 | MR | Zbl | DOI

[TW12.] Tonegawa, Y.; Wickramasekera, N. Stable phase interfaces in the van der Waals–Cahn–Hilliard theory, J. Reine Angew. Math., Volume 668 (2012), pp. 191-210 | MR | Zbl

[Wan17.] Wang, K. Some remarks on the structure of finite Morse index solutions to the Allen-Cahn equation in 𝐑 2 , NoDEA Nonlinear Differential Equations Appl., Volume 24 (2017) | MR | Zbl | DOI

[Wan20.] Z. Wang, Deformations of singular minimal hypersurfaces I, isolated singularities, | arXiv

[Whi91.] White, B. The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., Volume 40 (1991), pp. 161-200 | MR | Zbl | DOI

[Whi17.] White, B. On the bumpy metrics theorem for minimal submanifolds, Am. J. Math., Volume 139 (2017), pp. 1149-1155 | MR | Zbl | DOI

[Whi21.] B. White, Personal communication, June 2021.

[Wic14.] Wickramasekera, N. A general regularity theory for stable codimension 1 integral varifolds, Ann. Math., Volume 179 (2014), pp. 843-1007 | MR | Zbl | DOI

[WW19a.] Wang, K.; Wei, J. Finite Morse index implies finite ends, Commun. Pure Appl. Math., Volume 72 (2019), pp. 1044-1119 | MR | Zbl | DOI

[WW19b.] Wang, K.; Wei, J. Second order estimate on transition layers, Adv. Math., Volume 358 (2019) | MR | Zbl | DOI

[Xu18.] Xu, G. The (p,m)-width of Riemannian manifolds and its realization, Indiana Univ. Math. J., Volume 67 (2018), pp. 999-1023 | MR | Zbl | DOI

[Zho15.] Zhou, X. Min-max minimal hypersurface in (M n+1 ,g) with Ric>0 and 2n6, J. Differ. Geom., Volume 100 (2015), pp. 129-160 | Zbl | MR | DOI

[Zho17.] Zhou, X. Min-max hypersurface in manifold of positive Ricci curvature, J. Differ. Geom., Volume 105 (2017), pp. 291-343 | MR | Zbl | DOI

[Zho20.] Zhou, X. On the multiplicity one conjecture in min-max theory, Ann. Math., Volume 192 (2020), pp. 767-820 | MR | Zbl | DOI

[ZZ19.] Zhou, X.; Zhu, J. J. Min-max theory for constant mean curvature hypersurfaces, Invent. Math., Volume 218 (2019), pp. 441-490 | MR | Zbl | DOI

[ZZ20a.] Zhou, X.; Zhu, J. Existence of hypersurfaces with prescribed mean curvature I—generic min-max, Camb. J. Math., Volume 8 (2020), pp. 311-362 | MR | Zbl | DOI

[ZZ20b.] Zhou, X.; Zhu, J. J. Min-max theory for networks of constant geodesic curvature, Adv. Math., Volume 361 (2020) | MR | Zbl | DOI

Cité par Sources :