Article
Hecke correspondences for smooth moduli spaces of sheaves
Publications Mathématiques de l'IHÉS, Tome 135 (2022), pp. 337-418

We define functors on the derived category of the moduli space ℳ of stable sheaves on a smooth projective surface (under Assumptions A and S below), and prove that these functors satisfy certain commutation relations. These relations allow us to prove that the given functors induce an action of the elliptic Hall algebra on the K-theory of the moduli space ℳ, thus generalizing the action studied by Nakajima, Grojnowski and Baranovsky in cohomology.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-022-00131-1
@article{PMIHES_2022__135__337_0,
     author = {Negu\c{t}, Andrei},
     title = {Hecke correspondences for smooth moduli spaces of sheaves},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {337--418},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {135},
     doi = {10.1007/s10240-022-00131-1},
     zbl = {1506.14029},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-022-00131-1/}
}
TY  - JOUR
AU  - Neguţ, Andrei
TI  - Hecke correspondences for smooth moduli spaces of sheaves
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 337
EP  - 418
VL  - 135
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-022-00131-1/
DO  - 10.1007/s10240-022-00131-1
LA  - en
ID  - PMIHES_2022__135__337_0
ER  - 
%0 Journal Article
%A Neguţ, Andrei
%T Hecke correspondences for smooth moduli spaces of sheaves
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 337-418
%V 135
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-022-00131-1/
%R 10.1007/s10240-022-00131-1
%G en
%F PMIHES_2022__135__337_0
Neguţ, Andrei. Hecke correspondences for smooth moduli spaces of sheaves. Publications Mathématiques de l'IHÉS, Tome 135 (2022), pp. 337-418. doi: 10.1007/s10240-022-00131-1

[1.] Arinkin, D.; Căldăraru, A.; Hablicsek, M. Formality of derived intersections and the orbifold HKR isomorphism, J. Algebra, Volume 540 (2019), pp. 100-120 | MR | Zbl | DOI

[2.] Baranovsky, V. Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differ. Geom., Volume 55 (2000), pp. 193-227 | MR | Zbl | DOI

[3.] Basili, R. On commuting varieties of upper triangular matrices, Commun. Algebra, Volume 45 (2017), pp. 1533-1541 | MR | DOI | Zbl

[4.] Burban, I.; Schiffmann, O. On the Hall algebra of an elliptic curve I, Duke Math. J., Volume 161 (2012), pp. 1171-1231 | MR | Zbl | DOI

[5.] Carlsson, E.; Gorsky, E.; Mellit, A. The 𝐀 q,t algebra and parabolic flag Hilbert schemes, Math. Ann., Volume 376 (2020), pp. 1303-1336 | MR | Zbl | DOI

[6.] Cautis, S.; Licata, A. Heisenberg categorification and Hilbert schemes, Duke Math. J., Volume 161 (2012), pp. 2469-2547 | MR | DOI | Zbl

[7.] Cherednik, I. Double Affine Hecke Algebras, Cambridge University Press, Cambridge, 2005 (xii+434 pp.) (ISBN: 0-521-60918-6) | DOI | Zbl

[8.] Ding, J.; Iohara, K. Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys., Volume 41 (1997), pp. 181-193 | MR | Zbl | DOI

[9.] Ellingsrud, G.; Lehn, M. Irreducibility of the punctual quotient scheme of a surface, Ark. Mat., Volume 37 (1999), pp. 245-254 | MR | Zbl | DOI

[10.] Ellingsrud, G.; Strømme, A. On the homology of the Hilbert schemes on points in the plane, Invent. Math., Volume 87 (1987), pp. 343-352 | MR | DOI | Zbl

[11.] Feigin, B.; Tsymbaliuk, A. Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra, Kyoto J. Math., Volume 51 (2011), pp. 831-854 | MR | Zbl

[12.] Feigin, B.; Hashizume, K.; Hoshino, A.; Shiraishi, J.; Yanagida, S. A commutative algebra on degenerate 𝐂𝐏 1 and MacDonald polynomials, J. Math. Phys., Volume 50 (2009) | MR | DOI | Zbl

[13.] Fu, L.; Nguyen, M.-T. Orbifold products for higher K-theory and motivic cohomology, Doc. Math., Volume 24 (2019), pp. 1769-1810 | MR | Zbl | DOI

[14.] E. Gorsky and A. Neguţ, The trace of the affine Hecke category, | arXiv

[15.] Gorsky, E.; Neguţ, A.; Rasmussen, J. Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math., Volume 378 (2021) (115 pp.) | MR | Zbl | DOI

[16.] Göttsche, L. The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., Volume 286 (1990), pp. 193-207 | MR | Zbl | DOI

[17.] Grojnowski, I. Instantons and affine algebras I. The Hilbert scheme and vertex operators, Math. Res. Lett., Volume 3 (1996), pp. 275-291 | MR | DOI | Zbl

[18.] Huybrechts, D.; Lehn, M. The Geometry of Moduli Spaces of Sheaves, Cambridge University Press, Cambridge, 2010 (ISBN: 978-0-521-13420-0) | DOI | Zbl

[19.] Krug, A. Symmetric quotient stacks and Heisenberg actions, Math. Z., Volume 288 (2018), pp. 11-22 | MR | Zbl | DOI

[20.] Maulik, D.; Neguţ, A. Lehn’s formula in Chow and conjectures of Beauville and Voisin, J. Inst. Math. Jussieu, Volume 21 (2022), pp. 933-971 | MR | Zbl | DOI

[21.] Maulik, D.; Okounkov, A. Quantum Groups and Quantum Cohomology, 408, 2019 (ix+209 pp.) (ISBN: 978-2-85629-900-5) | Zbl

[22.] Miki, K. A (q,γ) analog of the W 1+ algebra, J. Math. Phys., Volume 48 (2007) | MR | DOI | Zbl

[23.] Nakajima, H. Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math., Volume 145 (1997), pp. 379-388 | MR | DOI | Zbl

[24.] Neguţ, A. The shuffle algebra revisited, Int. Math. Res. Not., Volume 22 (2014), pp. 6242-6275 | MR | Zbl | DOI

[25.] Neguţ, A. Moduli of flags of sheaves and their K-theory, Algebr. Geom., Volume 2 (2015), pp. 19-43 | MR | Zbl | DOI

[26.] Neguţ, A. The q-AGT-W relations via shuffle algebras, Commun. Math. Phys., Volume 358 (2018), pp. 101-170 | MR | Zbl | DOI

[27.] Neguţ, A. Shuffle algebras associated to surfaces, Sel. Math. (N.S.), Volume 25 (2019) (57 pp.) | MR | Zbl | DOI

[28.] Neguţ, A. W-algebras associated to surfaces, Proc. Lond. Math. Soc. (2022) | DOI | Zbl

[29.] A. Neguţ, AGT relations for sheaves on surfaces, | arXiv

[30.] Schiffmann, O. Drinfeld realization of the elliptic Hall algebra, J. Algebraic Comb., Volume 35 (2012), pp. 237-262 | MR | DOI | Zbl

[31.] Schiffmann, O.; Vasserot, E. The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of 𝐀 2 , Duke Math. J., Volume 162 (2013), pp. 279-366 | MR | DOI | Zbl

[32.] Schiffmann, O.; Vasserot, E. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on 𝐀 2 , Publ. Math. Inst. Hautes Études Sci., Volume 118 (2013), pp. 213-342 | MR | Zbl | Numdam | DOI

[33.] B. Toën, Proper local complete intersection morphisms preserve perfect complexes, | arXiv

[34.] Voisin, C. On the Chow ring of certain algebraic hyper-Kahler manifolds, Pure Appl. Math. Q., Volume 4 (2008), pp. 613-649 | MR | DOI | Zbl

Cité par Sources :