Article
The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case
Publications Mathématiques de l'IHÉS, Tome 135 (2022), pp. 183-336

In this paper, we prove the Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture for unitary groups U n ×U n+1 in all the endoscopic cases. Our main technical innovation is the computation of the contributions of certain cuspidal data, called ∗-regular, to the Jacquet-Rallis trace formula for linear groups. We offer two different computations of these contributions: one, based on truncation, is expressed in terms of regularized Rankin-Selberg periods of Eisenstein series and Flicker-Rallis intertwining periods introduced by Jacquet-Lapid-Rogawski. The other, built upon Zeta integrals, is expressed in terms of functionals on the Whittaker model. A direct proof of the equality between the two expressions is also given. Finally several useful auxiliary results about the spectral expansion of the Jacquet-Rallis trace formula are provided.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-021-00129-1
@article{PMIHES_2022__135__183_0,
     author = {Beuzart-Plessis, Rapha\"el and Chaudouard, Pierre-Henri and Zydor, Micha{\l}},
     title = {The global {Gan-Gross-Prasad} conjecture for unitary groups: the endoscopic case},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {183--336},
     year = {2022},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {135},
     doi = {10.1007/s10240-021-00129-1},
     mrnumber = {4426741},
     zbl = {1537.11072},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-021-00129-1/}
}
TY  - JOUR
AU  - Beuzart-Plessis, Raphaël
AU  - Chaudouard, Pierre-Henri
AU  - Zydor, Michał
TI  - The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case
JO  - Publications Mathématiques de l'IHÉS
PY  - 2022
SP  - 183
EP  - 336
VL  - 135
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-021-00129-1/
DO  - 10.1007/s10240-021-00129-1
LA  - en
ID  - PMIHES_2022__135__183_0
ER  - 
%0 Journal Article
%A Beuzart-Plessis, Raphaël
%A Chaudouard, Pierre-Henri
%A Zydor, Michał
%T The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case
%J Publications Mathématiques de l'IHÉS
%D 2022
%P 183-336
%V 135
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-021-00129-1/
%R 10.1007/s10240-021-00129-1
%G en
%F PMIHES_2022__135__183_0
Beuzart-Plessis, Raphaël; Chaudouard, Pierre-Henri; Zydor, Michał. The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Publications Mathématiques de l'IHÉS, Tome 135 (2022), pp. 183-336. doi: 10.1007/s10240-021-00129-1

[AG09.] Aizenbud, A.; Gourevitch, D. Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem, Duke Math. J., Volume 149 (2009), pp. 509-567 (with an appendix by the authors and Eitan Sayag) | MR | Zbl | DOI

[Art78.] Arthur, J. A trace formula for reductive groups I. Terms associated to classes in G(𝐐), Duke Math. J., Volume 45 (1978), pp. 911-952 | MR | Zbl | DOI

[Art80.] Arthur, J. A trace formula for reductive groups II, Compos. Math., Volume 40 (1980), pp. 87-121 | Zbl | MR | Numdam

[Art81.] Arthur, J. The trace formula in invariant form, Ann. Math. (2), Volume 114 (1981), pp. 1-74 | MR | Zbl | DOI

[Art82.] Arthur, J. On the inner product of truncated Eisenstein series, Duke Math. J., Volume 49 (1982), pp. 35-70 | MR | Zbl | DOI

[Art85.] Arthur, J. A measure on the unipotent variety, Can. J. Math., Volume 37 (1985), pp. 1237-1274 | MR | Zbl | DOI

[Bar03.] Baruch, E. A proof of Kirillov’s conjecture, Ann. Math. (2), Volume 158 (2003), pp. 207-252 | MR | Zbl | DOI

[Ber84.] Bernstein, J. P-invariant distributions on GL (N) and the classification of unitary representations of GL (N) (non-Archimedean case), Lie Group Representations, II, Volume 1041 (1984), pp. 50-102 | DOI | MR | Zbl

[Ber88.] Bernstein, J. On the support of Plancherel measure, J. Geom. Phys., Volume 5 (1989), pp. 663-710 | MR | Zbl | DOI

[BK14.] Bernstein, J.; Krötz, B. Smooth Fréchet globalizations of Harish-Chandra modules, Isr. J. Math., Volume 199 (2014), pp. 45-111 | Zbl | MR | DOI

[BL19.] J. Bernstein and E. Lapid, On the meromorphic continuation of Eisenstein series, | arXiv

[Bou67.] Bourbaki, N. Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), 1333, Hermann, Paris, 1967 | Zbl | MR

[BP.] Beuzart-Plessis, R. A new proof of Jacquet-Rallis’s fundamental lemma, Duke Math. J., Volume 170 (2021), pp. 2805-2814 | MR | Zbl | DOI

[BP20.] Beuzart-Plessis, R. A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, Astérisque, Volume 418 (2020), pp. viii-299 (ISBN: 978-2-85629-919-7) | MR | Zbl

[BP21a.] Beuzart-Plessis, R. Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups, J. Inst. Math. Jussieu, Volume 20 (2021), pp. 1803-1854 | MR | Zbl | DOI

[BP21b.] Beuzart-Plessis, R. Archimedean theory and ϵ-factors for the Asai Rankin-Selberg integrals, Relative Trace Formulas, Simons Symposia, Springer, Cham, 2021 | Zbl | MR | DOI

[BP21c.] Beuzart-Plessis, R. Plancherel formula for GL n (F)GL n (E) and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, Invent. Math., Volume 225 (2021), pp. 159-297 | MR | Zbl | DOI

[BPLZZ21.] Beuzart-Plessis, R.; Liu, Y.; Zhang, W.; Zhu, X. Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture, Ann. Math. (2), Volume 194 (2021), pp. 519-584 | MR | Zbl | DOI

[Cas89a.] Casselman, W. Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., Volume 41 (1989), pp. 385-438 | MR | Zbl | DOI

[Cas89b.] Casselman, W. Introduction to the Schwartz space of ΓG, Can. J. Math., Volume 41 (1989), pp. 285-320 | MR | Zbl | DOI

[Cog08.] Cogdell, J. Notes on L-functions for GL n , School on Automorphic Forms on $\mathrm{GL}(n)$ GL ( n ) , 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, pp. 75-158 | MR | Zbl

[CZ21.] Chaudouard, P.-H.; Zydor, M. Le transfert singulier pour la formule des traces de Jacquet-Rallis, Compos. Math., Volume 157 (2021), pp. 303-434 | MR | Zbl | DOI

[DM78.] Dixmier, J.; Malliavin, P. Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2), Volume 102 (1978), pp. 307-330 | MR | Zbl

[FL17.] Finis, T.; Lapid, E. On the analytic properties of intertwining operators I: global normalizing factors, Bull. Iranian Math. Soc., Volume 43 (2017), pp. 235-277 | MR | Zbl

[Fli88.] Flicker, Y. Twisted tensors and Euler products, Bull. Soc. Math. Fr., Volume 116 (1988), pp. 295-313 | MR | Zbl | DOI | Numdam

[FLO12.] Feigon, B.; Lapid, E.; Offen, O. On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 185-323 | MR | Zbl | DOI | Numdam

[Fra98.] Franke, J. Harmonic analysis in weighted L 2 -spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 31 (1998), pp. 181-279 | Zbl | DOI | MR | Numdam

[FS98.] Franke, J.; Schwermer, J. A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann., Volume 311 (1998), pp. 765-790 | MR | Zbl | DOI

[GGP12.] Gan, W. T.; Gross, B.; Prasad, D. Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque, Volume 346 (2012), pp. 1-109 (Sur les conjectures de Gross et Prasad. I) | MR | Zbl | Numdam

[GJR01.] Gelbart, S.; Jacquet, H.; Rogawski, J. Generic representations for the unitary group in three variables, Isr. J. Math., Volume 126 (2001), pp. 173-237 | MR | Zbl | DOI

[GJR09.] Ginzburg, D.; Jiang, D.; Rallis, S. Models for certain residual representations of unitary groups, Automorphic Forms and $L$ L -Functions I. Global Aspects, 488, Am. Math. Soc., Providence, 2009, pp. 125-146 | Zbl

[GK72.] Gelfand, I. M.; Každan, D. A. Representations of the group GL (n,K) where K is a local field, Funkc. Anal. Prilozh., Volume 6 (1972), pp. 73-74 | MR | Zbl

[GL.] Grobner, H.; Lin, J. Special values of L-functions and the refined Gan-Gross-Prasad conjecture, Am. J. Math., Volume 143 (2021), pp. 1-79 | MR | Zbl | DOI

[Gol94.] Goldberg, D. Some results on reducibility for unitary groups and local Asai L-functions, J. Reine Angew. Math., Volume 448 (1994), pp. 65-95 | MR | Zbl

[Gro53.] Grothendieck, A. Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math., Volume 192 (1953), pp. 35-64 | MR | Zbl | DOI

[Gro55.] Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires, 16, 1955 (Chap. 1: 196 pp.; Chap. 2: 140 pp.) | Zbl

[Gro73.] Grothendieck, A. Topological Vector Spaces, Gordon and Breach, New York, 1973 (translated from the French by Orlando Chaljub) | Zbl

[Gro97.] Gross, B. On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | MR | Zbl | DOI

[GRS11.] Ginzburg, D.; Rallis, S.; Soudry, D. The Descent Map from Automorphic Representations of GL ( n ) to Classical Groups, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2011 | Zbl | DOI

[Har14.] Harris, R. N. The refined Gross-Prasad conjecture for unitary groups, Int. Math. Res. Not., Volume 2014 (2014), pp. 303-389 | MR | Zbl | DOI

[IY15.] Ichino, A.; Yamana, S. Periods of automorphic forms: the case of (GL n+1 ×GL n ,GL n ), Compos. Math., Volume 151 (2015), pp. 665-712 | MR | Zbl | DOI

[IY19.] Ichino, A.; Yamana, S. Periods of automorphic forms: the case of (U n+1 ×U n ,U n ), J. Reine Angew. Math., Volume 746 (2019), pp. 1-38 | MR | Zbl | DOI

[Jac04.] Jacquet, H. Integral representation of Whittaker functions, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, Baltimore, 2004, pp. 373-419 | Zbl

[Jac09.] Jacquet, H. Archimedean Rankin-Selberg integrals. In automorphic forms and L-functions II. Local aspects, Contemp. Math., 489, Am. Math. Soc., Providence, 2009, pp. 57-172 | Zbl | DOI

[Jac10.] Jacquet, H. Distinction by the quasi-split unitary group, Isr. J. Math., Volume 178 (2010), pp. 269-324 | MR | Zbl | DOI

[JLR99.] Jacquet, H.; Lapid, E.; Rogawski, J. Periods of automorphic forms, J. Am. Math. Soc., Volume 12 (1999), pp. 173-240 | MR | Zbl | DOI

[JPSS83.] Jacquet, H.; Piatetskii-Shapiro, I. I.; Shalika, J. A. Rankin-Selberg convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | MR | Zbl | DOI

[JR11.] Jacquet, H.; Rallis, S. On the Gross-Prasad conjecture for unitary groups, On Certain $L$ L -Functions, 13, Am. Math. Soc., Providence, 2011, pp. 205-264 | Zbl

[JS81a.] Jacquet, H.; Shalika, J. A. On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI

[JS81b.] Jacquet, H.; Shalika, J. A. On Euler products and the classification of automorphic representations. I, Am. J. Math., Volume 103 (1981), pp. 499-558 | MR | Zbl | DOI

[JZ20.] Jiang, D.; Zhang, L. Arthur parameters and cuspidal automorphic modules of classical groups, Ann. Math. (2), Volume 191 (2020), pp. 739-827 | MR | Zbl | DOI

[Kem15.] Kemarsky, A. A note on the Kirillov model for representations of GL n (𝐂), C. R. Math. Acad. Sci. Paris, Volume 353 (2015), pp. 579-582 | MR | Zbl | DOI

[KMSW.] T. Kaletha, A. Minguez, S.-W. Shin and P.-J. White, Endoscopic classification of representations: inner forms of unitary groups, | arXiv

[KS88.] Keys, C.; Shahidi, F. Artin L-functions and normalization of intertwining operators, Ann. Sci. Éc. Norm. Supér. (4), Volume 21 (1988), pp. 67-89 | MR | Zbl | Numdam | DOI

[Lan76.] Langlands, R. On the Functional Equations Satisfied by Eisenstein Series, 544, Springer, Berlin, 1976 | Zbl | DOI

[Lap06.] Lapid, E. On the fine spectral expansion of Jacquet’s relative trace formula, J. Inst. Math. Jussieu, Volume 5 (2006), pp. 263-308 | MR | Zbl | DOI

[Lap08.] Lapid, E. A remark on Eisenstein series, Eisenstein Series and Applications, 258, Birkhäuser, Boston, 2008, pp. 239-249 | Zbl | DOI

[Lap11.] Lapid, E. On Arthur’s asymptotic inner product formula of truncated Eisenstein series, On Certain $L$ L -Functions, 13, Am. Math. Soc., Providence, 2011, pp. 309-331 | Zbl

[Lap13.] Lapid, E. On the Harish-Chandra Schwartz space of G(F)G(𝐀), Automorphic Representations and $L$ L -Functions, 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 335-377 (with an appendix by Farrell Brumley) | Zbl

[LR03.] Lapid, E.; Rogawski, J. Periods of Eisenstein series: the Galois case, Duke Math. J., Volume 120 (2003), pp. 153-226 | MR | Zbl | DOI

[LW13.] Labesse, J.-P.; Waldspurger, J.-L. La formule des traces tordue d’après le Friday Morning Seminar, 31, Am. Math. Soc., Providence, 2013 (with a foreword by Robert Langlands [dual English/French text]) | Zbl | DOI

[Mok15.] Mok, C. P. Endoscopic Classification of Representations of Quasi-Split Unitary Groups, 235(1108), 2015 (vi+248) | Zbl

[MS04.] Müller, W.; Speh, B. Absolute convergence of the spectral side of the Arthur trace formula for GL n , Geom. Funct. Anal., Volume 14 (2004), pp. 58-93 (with an appendix by E. M. Lapid) | MR | Zbl | DOI

[MW89.] Mœglin, C.; Waldspurger, J.-L. Le spectre résiduel de GL (n), Ann. Sci. Éc. Norm. Supér. (4), Volume 22 (1989), pp. 605-674 | Zbl | DOI | Numdam

[MW94.] Mœglin, C.; Waldspurger, J.-L. Décomposition spectrale et séries d’Eisenstein, 113, Birkhäuser, Basel, 1994 (Une paraphrase de l’Écriture. [A paraphrase of Scripture]) | Zbl

[Mül00.] Müller, W. On the singularities of residual intertwining operators, Geom. Funct. Anal., Volume 10 (2000), pp. 1118-1170 | MR | Zbl | DOI

[Ram18.] D. Ramakrishnan, A Theorem on GL(n) à la Tchebotarev, arXiv e-prints, | arXiv

[Sha81.] Shahidi, F. On certain L-functions, Am. J. Math., Volume 103 (1981), pp. 297-355 | Zbl | DOI

[Sha90.] Shahidi, F. A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math. (2), Volume 132 (1990), pp. 273-330 | MR | Zbl | DOI

[Trè67.] Trèves, F. Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967 | Zbl

[Wal92.] Wallach, N. Real Reductive Groups. II, 132, Academic Press, Boston, 1992 | Zbl

[Wei82.] Weil, A. Adeles and Algebraic Groups, 23, Birkhäuser, Boston, 1982 (with appendices by M. Demazure and Takashi Ono) | Zbl | DOI

[Xue19.] Xue, H. On the global Gan-Gross-Prasad conjecture for unitary groups: approximating smooth transfer of Jacquet-Rallis, J. Reine Angew. Math., Volume 756 (2019), pp. 65-100 | MR | Zbl | DOI

[Yun11.] Yun, Z. The fundamental lemma of Jacquet and Rallis, Duke Math. J., Volume 156 (2011), pp. 167-227 (with an appendix by Julia Gordon) | MR | Zbl

[Zha14a.] Zhang, W. Automorphic period and the central value of Rankin-Selberg L-function, J. Am. Math. Soc., Volume 27 (2014), pp. 541-612 | MR | Zbl | DOI

[Zha14b.] Zhang, W. Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. Math. (2), Volume 180 (2014), pp. 971-1049 | MR | Zbl | DOI

[Zyd16.] Zydor, M. La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes unitaires, Can. J. Math., Volume 68 (2016), pp. 1382-1435 | MR | Zbl | DOI

[Zyd18.] Zydor, M. La variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes linéaires, J. Inst. Math. Jussieu, Volume 17 (2018), pp. 735-783 | MR | Zbl | DOI

[Zyd20.] Zydor, M. Les formules des traces relatives de Jacquet–Rallis grossières, J. Reine Angew. Math., Volume 762 (2020), pp. 195-259 | MR | Zbl | DOI

Cité par Sources :