Article
Abelian surfaces over totally real fields are potentially modular
Publications Mathématiques de l'IHÉS, Tome 134 (2021), pp. 153-501

We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces A over 𝐐 with End 𝐂 A=𝐙. We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-021-00128-2
@article{PMIHES_2021__134__153_0,
     author = {Boxer, George and Calegari, Frank and Gee, Toby and Pilloni, Vincent},
     title = {Abelian surfaces over totally real fields are potentially modular},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {153--501},
     year = {2021},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {134},
     doi = {10.1007/s10240-021-00128-2},
     mrnumber = {4349242},
     zbl = {1522.11045},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-021-00128-2/}
}
TY  - JOUR
AU  - Boxer, George
AU  - Calegari, Frank
AU  - Gee, Toby
AU  - Pilloni, Vincent
TI  - Abelian surfaces over totally real fields are potentially modular
JO  - Publications Mathématiques de l'IHÉS
PY  - 2021
SP  - 153
EP  - 501
VL  - 134
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-021-00128-2/
DO  - 10.1007/s10240-021-00128-2
LA  - en
ID  - PMIHES_2021__134__153_0
ER  - 
%0 Journal Article
%A Boxer, George
%A Calegari, Frank
%A Gee, Toby
%A Pilloni, Vincent
%T Abelian surfaces over totally real fields are potentially modular
%J Publications Mathématiques de l'IHÉS
%D 2021
%P 153-501
%V 134
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-021-00128-2/
%R 10.1007/s10240-021-00128-2
%G en
%F PMIHES_2021__134__153_0
Boxer, George; Calegari, Frank; Gee, Toby; Pilloni, Vincent. Abelian surfaces over totally real fields are potentially modular. Publications Mathématiques de l'IHÉS, Tome 134 (2021), pp. 153-501. doi: 10.1007/s10240-021-00128-2

[AC89.] Arthur, J.; Clozel, L. Simple algebras, base change, and the advanced theory of the trace formula, 120, Princeton University Press, Princeton, 1989 | Zbl | MR

[ACC+18.] P. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B. Le Hung, J. Newton, P. Scholze, R. Taylor and J. Thorne, Potential automorphy over CM fields, preprint, 2018. | MR

[AGM20.] Ash, A.; Gunnells, P. E.; McConnell, M. Cohomology with twisted one-dimensional coefficients for congruence subgroups of SL 4 ( ) and Galois representations, J. Algebra, Volume 553 (2020), pp. 211-247 | MR | Zbl | DOI

[AIP15.] Andreatta, F.; Iovita, A.; Pilloni, V. p-adic families of Siegel modular cuspforms, Ann. Math. (2), Volume 181 (2015), pp. 623-697 | MR | Zbl | DOI

[All16.] Allen, P. B. Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., Volume 165 (2016), pp. 2407-2460 | MR | Zbl | DOI

[AMRT10.] Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y.-S. Smooth compactifications of locally symmetric varieties, Cambridge University Press, Cambridge, 2010 (With the collaboration of Peter Scholze) | Zbl | MR | DOI

[Art04.] Arthur, J. Automorphic representations of GSp ( 4 ) , Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, 2004, pp. 65-81 | MR | Zbl

[Art13.] Arthur, J. The endoscopic classification of representations, 61, Am. Math. Soc., Providence, 2013 (Orthogonal and symplectic groups) | Zbl | MR

[AS08.] A. Ash and G. Stevens, p-adic deformations of arithmetic cohomology, preprint, 2008.

[AT09.] Artin, E.; Tate, J. Class field theory, AMS Chelsea Publishing, Providence, 2009 (Reprinted with corrections from the 1967 original) | Zbl | MR

[B0̈0.] Böckle, G. Demuškin groups with group actions and applications to deformations of Galois representations, Compos. Math., Volume 121 (2000), pp. 109-154 | Zbl | DOI | MR

[Bak46.] Baker, H. F. A Locus with 25920 Linear Self-Transformations, 39, Cambridge University Press/The Macmillan Company, Cambridge/New York, 1946 | Zbl | MR

[Bal12.] S. Balaji, G-valued potentially semi-stable deformation rings, ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)–The University of Chicago. | MR

[BC11.] Bellaïche, J.; Chenevier, G. The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011), pp. 1337-1352 | MR | Zbl | DOI

[BCDT01.] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R. On the modularity of elliptic curves over 𝐐 : wild 3 -adic exercises, J. Am. Math. Soc., Volume 14 (2001), pp. 843-939 (electronic) | MR | Zbl | DOI

[BCGP21.] G. Boxer, F. Calegari, T. Gee and V. Pilloni, Auxiliary magma files, 2021, https://github.com/fcale75/abeliansurfacesmagmafiles.

[BCP97.] Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997), pp. 235-265 Computational algebra and number theory (London, 1993) | MR | Zbl | DOI

[BDPcS15.] Berger, T.; Dembélé, L.; Pacetti, A.; Şengün, M. H. Theta lifts of Bianchi modular forms and applications to paramodularity, J. Lond. Math. Soc. (2), Volume 92 (2015), pp. 353-370 | MR | Zbl | DOI

[BG08.] Baba, S.; Granath, H. Genus 2 curves with quaternionic multiplication, Can. J. Math., Volume 60 (2008), pp. 734-757 | MR | Zbl | DOI

[BG14.] Buzzard, K.; Gee, T. The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations. Vol. 1, 414, Cambridge University Press, Cambridge, 2014, pp. 135-187 | Zbl | MR | DOI

[BG19.] Bellovin, R.; Gee, T. G-valued local deformation rings and global lifts, Algebra Number Theory, Volume 13 (2019), pp. 333-378 | MR | Zbl | DOI

[BHR94.] Blasius, D.; Harris, M.; Ramakrishnan, D. Coherent cohomology, limits of discrete series, and Galois conjugation, Duke Math. J., Volume 73 (1994), pp. 647-685 | MR | Zbl | DOI

[BJ15.] Böckle, G.; Juschka, A.-K. Irreducibility of versal deformation rings in the (p,p)-case for 2-dimensional representations, J. Algebra, Volume 444 (2015), pp. 81-123 | MR | Zbl | DOI

[BK14.] Brumer, A.; Kramer, K. Paramodular abelian varieties of odd conductor, Trans. Am. Math. Soc., Volume 366 (2014), pp. 2463-2516 | MR | Zbl | DOI

[BK19.] Brumer, A.; Kramer, K. Corrigendum to “Paramodular abelian varieties of odd conductor”, Trans. Am. Math. Soc., Volume 372 (2019), pp. 2251-2254 | MR | Zbl | DOI

[BK20.] Berger, T.; Klosin, K. Deformations of Saito-Kurokawa type and the paramodular conjecture, Am. J. Math., Volume 142 (2020), pp. 1821-1875 (With and appendix by Chris Poor, Jerry Shurman, and David S. Yuen) | MR | Zbl | DOI

[BL04.] Birkenhake, C.; Lange, H. Complex abelian varieties, 302, Springer, Berlin, 2004 | Zbl | MR | DOI

[Bla06.] Blasius, D. Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, E37, Vieweg, Wiesbaden, 2006, pp. 35-56 | Zbl | DOI | MR

[BLGG13.] Barnet-Lamb, T.; Gee, T.; Geraghty, D. Congruences between Hilbert modular forms: constructing ordinary lifts, II, Math. Res. Lett., Volume 20 (2013), pp. 67-72 | MR | Zbl | DOI

[BLGGT14a.] Barnet-Lamb, T.; Gee, T.; Geraghty, D.; Taylor, R. Local-global compatibility for l=p, II, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014), pp. 165-179 | MR | Zbl | DOI | Numdam

[BLGGT14b.] Barnet-Lamb, T.; Gee, T.; Geraghty, D.; Taylor, R. Potential automorphy and change of weight, Ann. Math. (2), Volume 179 (2014), pp. 501-609 | MR | Zbl | DOI

[BLGHT11.] Barnet-Lamb, T.; Geraghty, D.; Harris, M.; Taylor, R. A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 29-98 | MR | Zbl | DOI

[BN18.] Bruin, N.; Nasserden, B. Arithmetic aspects of the Burkhardt quartic threefold, J. Lond. Math. Soc. (2), Volume 98 (2018), pp. 536-556 | MR | Zbl | DOI

[Bol07.] Bolognesi, M. On Weddle surfaces and their moduli, Adv. Geom., Volume 7 (2007), pp. 113-144 | MR | Zbl | DOI

[Box15.] G. Boxer, Torsion in the coherent cohomology of Shimura varieties and Galois representations, preprint, 2015. | MR

[BPP+19.] Brumer, A.; Pacetti, A.; Poor, C.; Tornaría, G.; Voight, J.; Yuen, D. S. On the paramodularity of typical abelian surfaces, Algebra Number Theory, Volume 13 (2019), pp. 1145-1195 | MR | Zbl | DOI

[BPS16.] Bijakowski, S.; Pilloni, V.; Stroh, B. Classicité de formes modulaires surconvergentes, Ann. Math. (2), Volume 183 (2016), pp. 975-1014 | MR | Zbl | DOI

[BPY16.] Breeding, J. II; Poor, C.; Yuen, D. S. Computations of spaces of paramodular forms of general level, J. Korean Math. Soc., Volume 53 (2016), pp. 645-689 | MR | Zbl | DOI

[BR16.] R. Brasca and G. Rosso, Eigenvarieties for non-cuspidal modular forms over certain PEL Shimura varieties, 2016.

[Bra47.] Brauer, R. On Artin’s L-series with general group characters, Ann. Math. (2), Volume 48 (1947), pp. 502-514 | MR | Zbl | DOI

[BT99.] Buzzard, K.; Taylor, R. Companion forms and weight one forms, Ann. Math. (2), Volume 149 (1999), pp. 905-919 | MR | Zbl | DOI

[Bur91.] Burkhardt, H. Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, Math. Ann., Volume 38 (1891), pp. 161-224 | MR | Zbl | DOI

[Buz03.] Buzzard, K. Analytic continuation of overconvergent eigenforms, J. Am. Math. Soc., Volume 16 (2003), pp. 29-55 | MR | Zbl | DOI

[Cai14.] Cais, B. On the U p operator in characteristic p, Math. Res. Lett., Volume 21 (2014), pp. 255-260 | MR | Zbl | DOI

[Cal12.] Calegari, F. Even Galois Representations and the Fontaine-Mazur conjecture II, J. Am. Math. Soc., Volume 25 (2012), pp. 533-554 | MR | Zbl | DOI

[Cal18.] Calegari, F. Non-minimal modularity lifting in weight one, J. Reine Angew. Math., Volume 740 (2018), pp. 41-62 | MR | Zbl | DOI

[Car12.] Caraiani, A. Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Volume 161 (2012), pp. 2311-2413 | MR | Zbl | DOI

[Car14.] Caraiani, A. Monodromy and local-global compatibility for l=p, Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI

[Cas.] W. Casselman, Introduction to admissible representations ofp-adic groups, Available at https://www.math.ubc.ca/~cass/research/publications.html.

[CC20.] F. Calegari and S. Chidambaram, Rationality of twists of the Siegel modular variety of genus 2 and level 3, 2020, | arXiv | MR

[CCG20.] Calegari, F.; Chidambaram, S.; Ghitza, A. Some modular abelian surfaces, Math. Comput., Volume 89 (2020), pp. 387-394 | MR | Zbl | DOI

[CCN+85.] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. Atlas of finite groups, Oxford University Press, Eynsham, 1985 (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray) | Zbl | MR

[CDT99.] Conrad, B.; Diamond, F.; Taylor, R. Modularity of certain potentially Barsotti-Tate Galois representations, J. Am. Math. Soc., Volume 12 (1999), pp. 521-567 | MR | Zbl | DOI

[CG13.] Calegari, F.; Gee, T. Irreducibility of automorphic Galois representations of GL(n), n at most 5, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 1881-1912 | MR | Zbl | DOI | Numdam

[CG18.] Calegari, F.; Geraghty, D. Modularity lifting beyond the Taylor–Wiles method, Invent. Math., Volume 211 (2018), pp. 297-433 | MR | Zbl | DOI

[CG20.] Calegari, F.; Geraghty, D. Minimal modularity lifting for nonregular symplectic representations, Duke Math. J., Volume 169 (2020), pp. 801-896 (With an appendix by Calegari, Geraghty and Michael Harris) | MR | Zbl | DOI

[Che04.] Chenevier, G. Familles p-adiques de formes automorphes pour GL n , J. Reine Angew. Math., Volume 570 (2004), pp. 143-217 | MR | Zbl

[Chi90.] Chi, W. C. On the l-adic representations attached to some absolutely simple abelian varieties of type II , J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 37 (1990), pp. 467-484 | MR | Zbl

[Chi92.] Chi, W. C. l-adic and λ-adic representations associated to abelian varieties defined over number fields, Am. J. Math., Volume 114 (1992), pp. 315-353 | MR | Zbl | DOI

[CHT08.] Clozel, L.; Harris, M.; Taylor, R. Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. IHES, Volume 108 (2008), pp. 1-181 | MR | Zbl | DOI | Numdam

[CL10.] Chaudouard, P.-H.; Laumon, G. Le lemme fondamental pondéré. I. Constructions géométriques, Compos. Math., Volume 146 (2010), pp. 1416-1506 | MR | Zbl | DOI

[Clo90.] Clozel, L. Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties and L -functions, Vol. I, Volume 10 (1990), pp. 77-159 | MR

[Cob06.] Coble, A. B. An invariant condition for certain automorphic algebraic forms, Am. J. Math., Volume 28 (1906), pp. 333-366 | MR | Zbl | DOI

[Col97.] Coleman, R. F. P-adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997), pp. 417-479 | MR | Zbl | DOI

[Cre84.] Cremona, J. E. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compos. Math., Volume 51 (1984), pp. 275-324 | MR | Zbl | Numdam

[Cre92.] Cremona, J. E. Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. Lond. Math. Soc. (2), Volume 45 (1992), pp. 404-416 | MR | Zbl | DOI

[DDT97.] Darmon, H.; Diamond, F.; Taylor, R. Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (1997), pp. 2-140 | MR

[Del73.] Deligne, P. Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable, II, Volume 349 (1973), pp. 501-597 | DOI | MR

[Del79.] Deligne, P. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L -functions, Volume XXXIII (1979), pp. 247-289 | DOI | MR

[Dia97.] Diamond, F. The Taylor–Wiles construction and multiplicity one, Invent. Math., Volume 128 (1997), pp. 379-391 | MR | Zbl | DOI

[dJ93.] de Jong, A. J. The moduli spaces of principally polarized abelian varieties with Γ 0 (p)-level structure, J. Algebraic Geom., Volume 2 (1993), pp. 667-688 | MR | Zbl

[DK00.] Duke, W.; Kowalski, E. A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math., Volume 139 (2000), pp. 1-39 (With an appendix by Dinakar Ramakrishnan) | MR | Zbl | DOI

[DK16.] Dembélé, L.; Kumar, A. Examples of abelian surfaces with everywhere good reduction, Math. Ann., Volume 364 (2016), pp. 1365-1392 | MR | Zbl | DOI

[DK17.] Diamond, F.; Kassaei, P. L. Minimal weights of Hilbert modular forms in characteristic p, Compos. Math., Volume 153 (2017), pp. 1769-1778 | MR | Zbl | DOI

[DL08.] Dolgachev, I.; Lehavi, D. On isogenous principally polarized abelian surfaces, Curves and abelian varieties, 465, Am. Math. Soc., Providence, 2008, pp. 51-69 | Zbl | MR | DOI

[DR73.] Deligne, P.; Rapoport, M. Les schémas de modules de courbes elliptiques, Modular functions of one variable, II, Volume 349 (1973), pp. 143-316 | MR | Zbl | DOI

[Edi92.] Edixhoven, B. The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992), pp. 563-594 | MR | Zbl | DOI

[EG14.] Emerton, M.; Gee, T. A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 183-223 | MR | Zbl | DOI

[Ell05.] Ellenberg, J. S. Serre’s conjecture over 𝔽 9 , Ann. Math. (2), Volume 161 (2005), pp. 1111-1142 | MR | Zbl | DOI

[ERX17.] Emerton, M.; Reduzzi, D.; Xiao, L. Unramifiedness of Galois representations arising from Hilbert modular surfaces, Forum Math. Sigma, Volume 5 (2017) | MR | Zbl | DOI

[Fal83.] Faltings, G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366 | MR | Zbl | DOI

[Far08.] Fargues, L. L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques, L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld, 262, Birkhäuser, Basel, 2008, pp. 1-325 | Zbl | DOI | MR

[Far10.] Fargues, L. La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Volume 645 (2010), pp. 1-39 | MR | Zbl | DOI

[Far11.] Fargues, L. La filtration canonique des points de torsion des groupes p-divisibles, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 905-961 (With collaboration of Yichao Tian) | MR | Zbl | Numdam | DOI

[FC90.] Faltings, G.; Chai, C.-L. Degeneration of abelian varieties, 22, Springer, Berlin, 1990 (With an appendix by David Mumford) | Zbl | MR | DOI

[FKRS12.] Fité, F.; Kedlaya, K. S.; Rotger, V.; Sutherland, A. V. Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012), pp. 1390-1442 | MR | Zbl | DOI

[Fon94.] Fontaine, J.-M. Représentations l-adiques potentiellement semi-stables, Astérisque, Volume 223 (1994), pp. 321-347 Périodes p -adiques (Bures-sur-Yvette, 1988) | Zbl | MR | Numdam

[FP21.] N. Fakhruddin and V. Pilloni, Hecke operators and the coherent cohomology of Shimura varieties, J. Inst. Math. Jussieu (2021), 1–69. | MR

[Fre83.] Freitag, E. Siegelsche Modulfunktionen, 254, Springer, Berlin, 1983 | Zbl | MR | DOI

[Ger19.] Geraghty, D. Modularity lifting theorems for ordinary Galois representations, Math. Ann., Volume 373 (2019), pp. 1341-1427 | MR | Zbl | DOI

[GG12.] Gee, T.; Geraghty, D. Companion forms for unitary and symplectic groups, Duke Math. J., Volume 161 (2012), pp. 247-303 | MR | Zbl | DOI

[GHLS17.] Gee, T.; Herzig, F.; Liu, T.; Savitt, D. Potentially crystalline lifts of certain prescribed types, Doc. Math., Volume 22 (2017), pp. 397-422 | MR | Zbl | DOI

[GJ72.] Godement, R.; Jacquet, H. Zeta functions of simple algebras, 260, Springer, Berlin, 1972 | Zbl | MR | DOI

[GK19.] Goldring, W.; Koskivirta, J.-S. Strata Hasse invariants, Hecke algebras and Galois representations, Invent. Math., Volume 217 (2019), pp. 887-984 | MR | Zbl | DOI

[GN20.] T. Gee and J. Newton, Patching and the completed homology of locally symmetric spaces, J. Inst. Math. Jussieu (2020), 1–64. | MR

[GPSR87.] Gelbart, S.; Piatetski-Shapiro, I.; Rallis, S. Explicit constructions of automorphic L -functions, 1254, Springer, Berlin, 1987 | Zbl | MR | DOI

[Gro90.] Gross, B. H. A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J., Volume 61 (1990), pp. 445-517 | MR | Zbl | DOI

[Gro16.] Gross, B. H. On the Langlands correspondence for symplectic motives, Izv. Ross. Akad. Nauk Ser. Mat., Volume 80 (2016), pp. 49-64 | MR | Zbl

[GRR72.] Grothendieck, A.; Raynaud, M.; Rim, D. S. Groupes de monodromie en géométrie algébrique. I, 288, Springer, Berlin, 1972 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de Michèle Raynaud et Dock S. Rim | Zbl

[GT05.] Genestier, A.; Tilouine, J. Systèmes de Taylor-Wiles pour GSp 4 , Astérisque, Volume 302 (2005), pp. 177-290 (Formes automorphes. II. Le cas du groupe GSp 4 ) | Zbl | MR | Numdam

[GT11a.] Gan, W. T.; Takeda, S. The local Langlands conjecture for GSp(4), Ann. Math. (2), Volume 173 (2011), pp. 1841-1882 | MR | Zbl | DOI

[GT11b.] Gan, W. T.; Takeda, S. Theta correspondences for GSp (4), Represent. Theory, Volume 15 (2011), pp. 670-718 | MR | Zbl | DOI

[GT19.] Gee, T.; Taïbi, O. Arthur’s multiplicity formula for 𝐆𝐒𝐩 4 and restriction to 𝐒𝐩 4 , J. Éc. Polytech. Math., Volume 6 (2019), pp. 469-535 | MR | Zbl | DOI

[Har66.] Hartshorne, R. Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, 20, Springer, Berlin, 1966 (With an appendix by Pierre Deligne) | Zbl | MR

[Har90a.] Harris, M. Automorphic forms and the cohomology of vector bundles on Shimura varieties, Automorphic forms, Shimura varieties, and L -functions, Vol. II, Volume 11 (1990), pp. 41-91 | MR | Zbl

[Har90b.] Harris, M. Automorphic forms of ¯-cohomology type as coherent cohomology classes, J. Differ. Geom., Volume 32 (1990), pp. 1-63 | MR | Zbl

[Hec20.] Hecke, E. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z., Volume 6 (1920), pp. 11-51 | MR | Zbl | DOI

[Hen09.] Henniart, G. Sur la fonctorialité, pour GL (4), donnée par le carré extérieur, Mosc. Math. J., Volume 9 (2009), pp. 33-45 (back matter) | MR | Zbl | DOI

[Hid04.] Hida, H. p -adic automorphic forms on Shimura varieties, Springer, New York, 2004 | Zbl | MR | DOI

[Hid09.] Hida, H. Irreducibility of the Igusa tower, Acta Math. Sin. Engl. Ser., Volume 25 (2009), pp. 1-20 | MR | Zbl | DOI

[HKP10.] Haines, T. J.; Kottwitz, R. E.; Prasad, A. Iwahori-Hecke algebras, J. Ramanujan Math. Soc., Volume 25 (2010), pp. 113-145 | MR | Zbl

[HLTT16.] Harris, M.; Lan, K.-W.; Taylor, R.; Thorne, J. On the rigid cohomology of certain Shimura varieties, Res. Math. Sci., Volume 3 (2016), p. 37 | MR | Zbl | DOI

[HS02.] Hulek, K.; Sankaran, G. K. The geometry of Siegel modular varieties, Higher dimensional birational geometry, Volume 35 (2002), pp. 89-156 | Zbl | DOI | MR

[HT01.] Harris, M.; Taylor, R. The geometry and cohomology of some simple Shimura varieties, 151, Princeton University Press, Princeton, 2001 (With an appendix by Vladimir G. Berkovich) | Zbl | MR

[Hub96.] Huber, R. Étale cohomology of rigid analytic varieties and adic spaces, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996 | Zbl | MR | DOI

[Hun96.] Hunt, B. The geometry of some special arithmetic quotients, 1637, Springer, Berlin, 1996 | Zbl | DOI | MR

[HZ01.] M. Harris and S. Zucker, Boundary cohomology of Shimura varieties. III. Coherent cohomology on higher-rank boundary strata and applications to Hodge theory, Mém. Soc. Math. Fr. (N.S.) (2001) vi+116. | MR | Numdam

[Igu64.] Igusa, J. On Siegel modular forms genus two. II, Am. J. Math., Volume 86 (1964), pp. 392-412 | MR | Zbl | DOI

[JLR12.] Johnson-Leung, J.; Roberts, B. Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory, Volume 132 (2012), pp. 543-564 | MR | Zbl | DOI

[Joc82.] Jochnowitz, N. Congruences between systems of eigenvalues of modular forms, Trans. Am. Math. Soc., Volume 270 (1982), pp. 269-285 | MR | Zbl | DOI

[Joh17.] Johansson, C. On the Sato-Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc., Volume 369 (2017), pp. 6303-6325 (With an appendix by Francesc Fité) | MR | Zbl | DOI

[Jon11.] Jones, O. T. R. An analogue of the BGG resolution for locally analytic principal series, J. Number Theory, Volume 131 (2011), pp. 1616-1640 | MR | Zbl | DOI

[JS81.] Jacquet, H.; Shalika, J. A. On Euler products and the classification of automorphic forms. II, Am. J. Math., Volume 103 (1981), pp. 777-815 | MR | Zbl | DOI

[Kas06.] Kassaei, P. L. A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006), pp. 509-529 | MR | Zbl | DOI

[Kas16.] Kassaei, P. L. Analytic continuation of overconvergent Hilbert modular forms, Astérisque, Volume 382 (2016), pp. 1-48 | MR | Zbl

[Kem78.] Kempf, G. The Grothendieck–Cousin complex of an induced representation, Adv. Math., Volume 29 (1978), pp. 310-396 | MR | Zbl | DOI

[Kim03.] Kim, H. H. Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Am. Math. Soc., Volume 16 (2003), pp. 139-183 (With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak) | DOI

[Kis08.] Kisin, M. Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI

[Kis09.] Kisin, M. Moduli of finite flat group schemes, and modularity, Ann. Math. (2), Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI

[Kle94.] Kleiman, S. L. The standard conjectures, Motives, Volume 55 (1994), pp. 3-20 | DOI

[Kot92.] Kottwitz, R. E. Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992), pp. 373-444 | MR | Zbl | DOI

[KR99.] Kudla, S. S.; Rapoport, M. Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math., Volume 515 (1999), pp. 155-244 | MR | Zbl | DOI

[KST14.] Kassaei, P. L.; Sasaki, S.; Tian, Y. Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case, Forum Math. Sigma, Volume 2 (2014) | MR | Zbl | DOI

[KT17.] Khare, C. B.; Thorne, J. A. Potential automorphy and the Leopoldt conjecture, Am. J. Math., Volume 139 (2017), pp. 1205-1273 | MR | Zbl | DOI

[Lan80.] Langlands, R. P. Base change for GL ( 2 ) , 96, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1980

[Lan13.] Lan, K.-W. Arithmetic compactifications of PEL-type Shimura varieties, 36, Princeton University Press, Princeton, 2013 | Zbl | DOI

[Lan16.] Lan, K.-W. Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum Math. Sigma, Volume 4 (2016) | MR | Zbl | DOI

[Lan17.] Lan, K.-W. Integral models of toroidal compactifications with projective cone decompositions, Int. Math. Res. Not., Volume 11 (2017), pp. 3237-3280 | MR | Zbl

[LPS13.] Lombardo, G.; Peters, C.; Schütt, M. Abelian fourfolds of Weil type and certain K3 double planes, Rend. Semin. Mat. Univ. Politec. Torino, Volume 71 (2013), pp. 339-383 | MR | Zbl

[Maz89.] Mazur, B. Deforming Galois representations, Galois groups over 𝐐 , Volume 16 (1989), pp. 385-437 | DOI

[MB89.] Moret-Bailly, L. Groupes de Picard et problèmes de Skolem II, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989), pp. 181-194 | MR | Zbl | DOI | Numdam

[MB90.] Moret-Bailly, L. Extensions de corps globaux à ramification et groupe de Galois donnés, C. R. Acad. Sci., Sér. 1 Math., Volume 311 (1990), pp. 273-276 | MR | Zbl

[Mes72.] Messing, W. The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, 264, Springer, Berlin, 1972 | Zbl | DOI

[Mil79.] Milne, J. S. Points on Shimura varieties mod p, Automorphic forms, representations and L -functions, Volume XXXIII (1979), pp. 165-184 | DOI

[Mok14.] Mok, C. P. Galois representations attached to automorphic forms on GL 2 over CM fields, Compos. Math., Volume 150 (2014), pp. 523-567 | MR | Zbl | DOI

[Mor84.] Morrison, D. R. On K3 surfaces with large Picard number, Invent. Math., Volume 75 (1984), pp. 105-121 | MR | Zbl | DOI

[Mor85.] Morrison, D. R. The Kuga-Satake variety of an abelian surface, J. Algebra, Volume 92 (1985), pp. 454-476 | MR | Zbl | DOI

[MT02.] Mokrane, A.; Tilouine, J. Cohomology of Siegel varieties with p-adic integral coefficients and applications, Astérisque, Volume 280 (2002), pp. 1-95 (Cohomology of Siegel varieties) | MR | Zbl | Numdam

[MT15.] Mok, C. P.; Tan, F. Overconvergent families of Siegel-Hilbert modular forms, Can. J. Math., Volume 67 (2015), pp. 893-922 | MR | Zbl | DOI

[Mum08.] Mumford, D. Abelian varieties, 5, Hindustan Book Agency, New Delhi, 2008 With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition | Zbl

[MW16a.] Mœglin, C.; Waldspurger, J.-L. Stabilisation de la formule des traces tordue, 1, Springer, Berlin, 2016 | Zbl | DOI

[MW16b.] Mœglin, C.; Waldspurger, J.-L. Stabilisation de la formule des traces tordue, 2, Springer, Berlin, 2016 | Zbl | DOI

[MZ95.] Moonen, B. J. J.; Zarhin, Y. G. Hodge classes and Tate classes on simple abelian fourfolds, Duke Math. J., Volume 77 (1995), pp. 553-581 | MR | Zbl | DOI

[Nak84.] Nakajima, S. On Galois module structure of the cohomology groups of an algebraic variety, Invent. Math., Volume 75 (1984), pp. 1-8 | MR | Zbl | DOI

[NG02.] Ngô, B. C.; Genestier, A. Alcôves et p-rang des variétés abéliennes, Ann. Inst. Fourier (Grenoble), Volume 52 (2002), pp. 1665-1680 | MR | Zbl | DOI | Numdam

[Noo13.] Noot, R. The system of representations of the Weil-Deligne group associated to an abelian variety, Algebra Number Theory, Volume 7 (2013), pp. 243-281 | MR | Zbl | DOI

[Noo17.] Noot, R. The p-adic representation of the Weil-Deligne group associated to an abelian variety, J. Number Theory, Volume 172 (2017), pp. 301-320 | MR | Zbl | DOI

[Pat19.] Patrikis, S. Variations on a theorem of Tate, Mem. Am. Math. Soc., Volume 258 (2019), p. viii+156 | MR | Zbl

[Pil11.] Pilloni, V. Prolongement analytique sur les variétés de Siegel, Duke Math. J., Volume 157 (2011), pp. 167-222 | MR | Zbl | DOI

[Pil12.] Pilloni, V. Modularité, formes de Siegel et surfaces abéliennes, J. Reine Angew. Math., Volume 666 (2012), pp. 35-82 | MR | Zbl

[Pil17.] Pilloni, V. Formes modulaires p-adiques de Hilbert de poids 1, Invent. Math., Volume 208 (2017), pp. 633-676 | MR | Zbl | DOI

[Pil20.] Pilloni, V. Higher coherent cohomology and p-adic modular forms of singular weights, Duke Math. J., Volume 169 (2020), pp. 1647-1807 | MR | Zbl | DOI

[Pin90.] Pink, R. Arithmetical compactification of mixed Shimura varieties, 209, Universität Bonn, Mathematisches Institut, Bonn, 1990 (Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Bonn, 1989) | Zbl

[Poi08.] Poineau, J. Un résultat de connexité pour les variétés analytiques p-adiques: privilège et noethérianité, Compos. Math., Volume 144 (2008), pp. 107-133 | MR | Zbl | DOI

[PS09.] Pitale, A.; Schmidt, R. Bessel models for lowest weight representations of GSp ( 4 , 𝐑 ) , Int. Math. Res. Not., Volume 7 (2009), pp. 1159-1212 | MR | Zbl

[PS16a.] Pilloni, V.; Stroh, B. Cohomologie cohérente et représentations Galoisiennes, Ann. Math. Qué., Volume 40 (2016), pp. 167-202 | MR | Zbl | DOI

[PS16b.] Pilloni, V.; Stroh, B. Surconvergence, ramification et modularité, Astérisque, Volume 382 (2016), pp. 195-266 | Zbl

[PSY17.] Poor, C.; Shurman, J.; Yuen, D. S. Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory, Volume 13 (2017), pp. 2627-2652 | MR | Zbl | DOI

[PT15.] Patrikis, S.; Taylor, R. Automorphy and irreducibility of some l-adic representations, Compos. Math., Volume 151 (2015), pp. 207-229 | MR | Zbl | DOI

[PVZ16.] Patrikis, S.; Voloch, J. F.; Zarhin, Y. G. Anabelian geometry and descent obstructions on moduli spaces, Algebra Number Theory, Volume 10 (2016), pp. 1191-1219 | MR | Zbl | DOI

[PY15.] Poor, C.; Yuen, D. S. Paramodular cusp forms, Math. Comput., Volume 84 (2015), pp. 1401-1438 | MR | Zbl | DOI

[Ram00.] Ramakrishnan, D. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL (2), Ann. Math. (2), Volume 152 (2000), pp. 45-111 | MR | Zbl | DOI

[Ray94.] Raynaud, M. 1-motifs et monodromie géométrique, Astérisque, Volume 223 (1994), pp. 295-319 Périodes p -adiques (Bures-sur-Yvette, 1988) | Zbl | Numdam

[Rib04.] Ribet, K. A. Abelian varieties over 𝐐 and modular forms, Modular curves and abelian varieties, 224, Birkhäuser, Basel, 2004, pp. 241-261 | Zbl | DOI

[Rie59.] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (1859), 671–680.

[Rob01.] Roberts, B. Global L-packets for GSp (2) and theta lifts, Doc. Math., Volume 6 (2001), pp. 247-314 (electronic) | MR | Zbl | DOI

[RS07a.] Ramakrishnan, D.; Shahidi, F. Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett., Volume 14 (2007), pp. 315-332 | MR | Zbl | DOI

[RS07b.] Roberts, B.; Schmidt, R. Local newforms for GSp(4), 1918, Springer, Berlin, 2007 | Zbl | DOI

[RS07c.] B. Roberts and R. Schmidt, Tables for representations of GSp(4), 2007, Available at http://www2.math.ou.edu/~rschmidt/papers/tables.pdf.

[RZ96.] Rapoport, M.; Zink, T. Period spaces for p -divisible groups, 141, Princeton University Press, Princeton, 1996 | Zbl | DOI

[Sai97.] Saito, T. Modular forms and p-adic Hodge theory, Invent. Math., Volume 129 (1997), pp. 607-620 | MR | Zbl | DOI

[Sas13.] Sasaki, S. On Artin representations and nearly ordinary Hecke algebras over totally real fields, Doc. Math., Volume 18 (2013), pp. 997-1038 | MR | Zbl | DOI

[Saw16.] Sawin, W. F. Ordinary primes for Abelian surfaces, C. R. Math. Acad. Sci. Paris, Volume 354 (2016), pp. 566-568 | MR | Zbl | DOI

[SBT97.] Shepherd-Barron, N. I.; Taylor, R. mod 2 and mod 5 icosahedral representations, J. Am. Math. Soc., Volume 10 (1997), pp. 283-298 | Zbl | DOI

[Sch15.] Scholze, P. On torsion in the cohomology of locally symmetric varieties, Ann. Math. (2), Volume 182 (2015), pp. 945-1066 | MR | Zbl | DOI

[Sch17.] Schmidt, R. Archimedean aspects of Siegel modular forms of degree 2, Rocky Mt. J. Math., Volume 47 (2017), pp. 2381-2422 | MR | Zbl | DOI

[Sch18.] Schmidt, R. Packet structure and paramodular forms, Trans. Am. Math. Soc., Volume 370 (2018), pp. 3085-3112 | MR | Zbl | DOI

[Sch19.] Schembri, C. Examples of genuine QM abelian surfaces which are modular, Res. Number Theory, Volume 5 (2019), p. 12 | MR | Zbl | DOI

[Sch20.] Schmidt, R. Paramodular forms in CAP representations of GSp (4), Acta Arith., Volume 194 (2020), pp. 319-340 | MR | Zbl | DOI

[SD73.] Swinnerton-Dyer, H. P. F. On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III, Volume 350 (1973), pp. 1-55 | DOI | Zbl

[Ser68.] Serre, J.-P. Abelian l -adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968 | Zbl

[Ser70.] J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou. Théorie des nombres, 11 (1969–1970), 1–15 (fre).

[Ser73.] Serre, J.-P. Formes modulaires et fonctions zêta p-adiques, Modular functions of one variable, III, Volume 350 (1973), pp. 191-268 | DOI | Zbl

[Ser77.] Serre, J.-P. Modular forms of weight one and Galois representations, Algebraic number fields: L -functions and Galois properties (1977), pp. 193-268 | Zbl

[Ser89.] Serre, J.-P. Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989 (Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt) | Zbl

[Ser00.] Serre, J.-P. Lettre à Marie-France Vignéras du 10/02/1987. Collected papers IV, Springer, Berlin, 2000, pp. 38-55

[Sha97.] Shahidi, F. On non-vanishing of twisted symmetric and exterior square L-functions for GL (n), Pac. J. Math., Volume 181 (1997), pp. 311-322 (Olga Taussky-Todd: in memoriam) | MR | DOI | Zbl

[Sho18.] Shotton, J. The Breuil-Mézard conjecture when lp, Duke Math. J., Volume 167 (2018), pp. 603-678 | MR | Zbl | DOI

[Ski09.] Skinner, C. A note on the p-adic Galois representations attached to Hilbert modular forms, Doc. Math., Volume 14 (2009), pp. 241-258 | MR | Zbl | DOI

[Sno09.] A. Snowden, On two dimensional weight two odd representations of totally real fields, 2009, | arXiv

[Sor10.] Sorensen, C. M. Galois representations attached to Hilbert-Siegel modular forms, Doc. Math., Volume 15 (2010), pp. 623-670 | MR | Zbl | DOI

[ST93.] Sally, P. J. Jr.; Tadić, M. Induced representations and classifications for GSp (2,F) and Sp (2,F), Mém. Soc. Math. Fr. (N.S.), Volume 52 (1993), pp. 75-133 | MR | Zbl | Numdam

[Sta13.] The Stacks Project Authors, Stacks Project, 2013, http://stacks.math.columbia.edu.

[Ste04.] Stein, W. A. Shafarevich–Tate groups of nonsquare order, Modular curves and abelian varieties, 224, Birkhäuser, Basel, 2004, pp. 277-289 | Zbl | DOI

[Str15.] Stroh, B. Mauvaise réduction au bord, Astérisque, Volume 370 (2015), pp. 269-304 | Zbl

[Tat79.] Tate, J. Number theoretic background, Automorphic forms, representations and L -functions, Volume XXXIII (1979), pp. 3-26 | DOI

[Tay02.] Taylor, R. Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, Volume 1 (2002), pp. 125-143 | MR | Zbl | DOI

[Tay03.] Taylor, R. On icosahedral Artin representations. II, Am. J. Math., Volume 125 (2003), pp. 549-566 | MR | Zbl | DOI

[Tay08.] Taylor, R. Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. Math. IHES, Volume 108 (2008), pp. 183-239 | MR | Zbl | DOI | Numdam

[Tho12.] Thorne, J. A. On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-920 (With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne) | MR | Zbl | DOI

[Tho15.] Thorne, J. A. Automorphy lifting for residually reducible l-adic Galois representations, J. Am. Math. Soc., Volume 28 (2015), pp. 785-870 | MR | Zbl | DOI

[Til96.] J. Tilouine, Deformations of Galois representations and Hecke algebras, Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1996).

[Til98.] Tilouine, J. Deformations of Siegel-Hilbert Hecke eigensystems and their Galois representations, Number theory, Volume 210 (1998), pp. 195-225 | DOI | Zbl

[Til06a.] Tilouine, J. Nearly ordinary rank four Galois representations and p-adic Siegel modular forms, Compos. Math., Volume 142 (2006), pp. 1122-1156 (With an appendix by Don Blasius) | MR | Zbl | DOI

[Til06b.] J. Tilouine, Siegel varieties and p-adic Siegel modular forms, Doc. Math. (2006), 781–817.

[Til09.] Tilouine, J. Cohomologie des variétés de Siegel et représentations galoisiennes associées aux représentations cuspidales cohomologiques de GSp 4 ( 𝐐 ) , Algèbre et théorie des nombres. Années 2007–2009, Lab. Math. Besançon, Besançon, 2009, pp. 99-114 | Zbl

[Til12.] Tilouine, J. Formes compagnons et complexe BGG dual pour GSp 4 , Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 1383-1436 | MR | Zbl | DOI | Numdam

[TU95.] Tilouine, J.; Urban, É. Familles p-adiques à trois variables de formes de Siegel et de représentations galoisiennes, C. R. Acad. Sci. Paris, Sér. 1 Math., Volume 321 (1995), pp. 5-10 | Zbl

[TU99.] Tilouine, J.; Urban, É. Several-variable p-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. Éc. Norm. Supér. (4), Volume 32 (1999), pp. 499-574 | MR | Zbl | Numdam | DOI

[Tun81.] Tunnell, J. Artin’s conjecture for representations of octahedral type, Bull. Am. Math. Soc. (N.S.), Volume 5 (1981), pp. 173-175 | MR | Zbl | DOI

[TW95.] Taylor, R.; Wiles, A. Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995), pp. 553-572 | MR | Zbl | DOI

[TY07.] Taylor, R.; Yoshida, T. Compatibility of local and global Langlands correspondences, J. Am. Math. Soc., Volume 20 (2007), pp. 467-493 (electronic) | MR | Zbl | DOI

[Urb11.] Urban, É. Eigenvarieties for reductive groups, Ann. Math. (2), Volume 174 (2011), pp. 1685-1784 | MR | Zbl | DOI

[Vig98.] Vignéras, M.-F. Induced r-representations of p-adic reductive groups, Sel. Math., Volume 4 (1998), pp. 549-623 | MR | Zbl | DOI

[Vig05.] Vignéras, M.-F. Pro-p-Iwahori Hecke ring and supersingular 𝐅 ¯ p -representations, Math. Ann., Volume 331 (2005), pp. 523-556 | MR | Zbl | DOI

[VW13.] Viehmann, E.; Wedhorn, T. Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann., Volume 356 (2013), pp. 1493-1550 | MR | Zbl | DOI

[Wal84.] Wallach, N. R. On the constant term of a square integrable automorphic form, Operator algebras and group representations, Vol. II, Volume 18 (1984), pp. 227-237 | MR

[Wei52.] Weil, A. Number-theory and algebraic geometry, Proceedings of the International Congress of Mathematicians, Volume 2 (1952), pp. 90-100 | MR

[Wie14.] Wiese, G. On Galois representations of weight one, Doc. Math., Volume 19 (2014), pp. 689-707 | MR | Zbl | DOI

[Wil95.] Wiles, A. Modular elliptic curves and Fermat’s last theorem, Ann. Math. (2), Volume 141 (1995), pp. 443-551 | MR | Zbl | DOI

[Yos80.] Yoshida, H. Siegel’s modular forms and the arithmetic of quadratic forms, Invent. Math., Volume 60 (1980), pp. 193-248 | MR | Zbl | DOI

[Yos84.] Yoshida, H. On Siegel modular forms obtained from theta series, J. Reine Angew. Math., Volume 352 (1984), pp. 184-219 | MR | Zbl

[Yu08.] Yu, C.-F. Irreducibility and p-adic monodromies on the Siegel moduli spaces, Adv. Math., Volume 218 (2008), pp. 1253-1285 | MR | Zbl | DOI

[Yu11.] Yu, C.-F. Geometry of the Siegel modular threefold with paramodular level structure, Proc. Am. Math. Soc., Volume 139 (2011), pp. 3181-3190 | MR | Zbl | DOI

Cité par Sources :