Article
Deviations of ergodic sums for toral translations II. Boxes
Publications Mathématiques de l'IHÉS, Tome 132 (2020), pp. 293-352

We study the Kronecker sequence {nα} nN on the torus 𝐓 d when α is uniformly distributed on 𝐓 d . We show that the discrepancy of the number of visits of this sequence to a random box, normalized by ln d N, converges as N to a Cauchy distribution. The key ingredient of the proof is a Poisson limit theorem for the Cartan action on the space of d+1 dimensional lattices.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-020-00120-2
@article{PMIHES_2020__132__293_0,
     author = {Dolgopyat, Dmitry and Fayad, Bassam},
     title = {Deviations of ergodic sums for toral translations {II.} {Boxes}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {293--352},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00120-2},
     zbl = {1473.37012},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-020-00120-2/}
}
TY  - JOUR
AU  - Dolgopyat, Dmitry
AU  - Fayad, Bassam
TI  - Deviations of ergodic sums for toral translations II. Boxes
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 293
EP  - 352
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-020-00120-2/
DO  - 10.1007/s10240-020-00120-2
LA  - en
ID  - PMIHES_2020__132__293_0
ER  - 
%0 Journal Article
%A Dolgopyat, Dmitry
%A Fayad, Bassam
%T Deviations of ergodic sums for toral translations II. Boxes
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 293-352
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-020-00120-2/
%R 10.1007/s10240-020-00120-2
%G en
%F PMIHES_2020__132__293_0
Dolgopyat, Dmitry; Fayad, Bassam. Deviations of ergodic sums for toral translations II. Boxes. Publications Mathématiques de l'IHÉS, Tome 132 (2020), pp. 293-352. doi: 10.1007/s10240-020-00120-2

[1.] Abadi, M.; Vergne, N. Sharp error for point-wise Poisson approximations in mixing processes, Nonlinearity, Volume 21 (2008), pp. 2871-2885 | MR | DOI | Zbl

[2.] Beck, J. Probabilistic Diophantine approximation. I. Kronecker sequences, Ann. Math., Volume 140 (1994), pp. 449-502 | MR | DOI | Zbl

[3.] Bellman, R. Research problem # 6, Bull. Am. Math. Soc., Volume 64 (1958), p. 60

[4.] Bufetov, A. I. Limit theorems for translation flows, Ann. Math., Volume 179 (2014), pp. 431-499 | MR | Zbl | DOI

[5.] Bufetov, A. I.; Forni, G. Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014), pp. 851-903 | MR | Zbl | Numdam | DOI

[6.] Bufetov, A. I.; Solomyak, B. Limit theorems for self-similar tilings, Commun. Math. Phys., Volume 319 (2013), pp. 761-789 | MR | Zbl | DOI

[7.] Cellarosi, F.; Marklof, J. Quadratic Weyl sums, automorphic functions and invariance principles, Proc. Lond. Math. Soc., Volume 113 (2016), pp. 775-828 | MR | DOI | Zbl

[8.] Chazottes, J.-R.; Collet, P. Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems, Ergod. Theory Dyn. Syst., Volume 33 (2013), pp. 49-80 | MR | DOI | Zbl

[9.] Conze, J.-P.; Isola, S.; Le Borgne, S. Diffusive behavior of ergodic sums over rotations, Stoch. Dyn., Volume 19 (2019) | MR | DOI | Zbl

[10.] Denker, M.; Gordin, M.; Sharova, A. A Poisson limit theorem for toral automorphisms, Ill. J. Math., Volume 48 (2004), pp. 1-20 | MR | DOI | Zbl

[11.] Dolgopyat, D. Limit theorems for partially hyperbolic systems, Trans. Am. Math. Soc., Volume 356 (2004), pp. 1637-1689 | MR | Zbl | DOI

[12.] Dolgopyat, D.; Fayad, B. Deviations of ergodic sums for toral translations-I: convex bodies, Geom. Funct. Anal., Volume 24 (2014), pp. 85-115 | MR | DOI | Zbl

[13.] Dolgopyat, D.; Fayad, B. Limit theorems for toral translations, Proc. Symp. Pure Math., Volume 89 (2015), pp. 227-277 | MR | DOI | Zbl

[14.] Dolgopyat, D.; Goldsheid, I. Quenched limit theorems for nearest neighbour random walks in 1D random environment, Commun. Math. Phys., Volume 315 (2012), pp. 241-277 | MR | DOI | Zbl

[15.] Dolgopyat, D.; Sarig, O. Quenched and annealed temporal limit theorems for circle rotations, Astérisque, Volume 415 (2020), pp. 57-85 | MR | Zbl

[16.] Feller, W. An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York-London-Sydney, 1971 (669 pp.) | Zbl

[17.] G. Forni and A. Kanigowski, Time-Changes of Heisenberg nilflows. Preprint, | arXiv

[18.] Freitas, J. M.; Haydn, N.; Nicol, M. Convergence of rare event point processes to the Poisson process for planar billiards, Nonlinearity, Volume 27 (2014), pp. 1669-1687 | MR | DOI | Zbl

[19.] Griffin, J.; Marklof, J. Limit theorems for skew translations, J. Mod. Dyn., Volume 8 (2014), pp. 177-189 | MR | DOI | Zbl

[20.] Hardy, G. H.; Littlewood, J. E. Some problems of Diophantine approximation: the lattice–points of a right–angled triangle, Proc. Lond. Math. Soc., Volume 3 (1922), pp. 15-36 | MR | DOI

[21.] Hirata, M. Poisson law for Axiom A diffeomorphisms, Ergod. Theory Dyn. Syst., Volume 13 (1993), pp. 533-556 | MR | DOI | Zbl

[22.] Hirata, M. Poisson law for the dynamical systems with self-mixing conditions (Aoki, N.; Shiraiwa, K.; Takahashi, Y., eds.), Dynamical Systems and Chaos, 1, World Scientific, Singapore, 1995, pp. 87-96 | Zbl

[23.] Huveneers, F. Subdiffusive behavior generated by irrational rotations, Ergod. Theory Dyn. Syst., Volume 29 (2009), pp. 1217-1233 | MR | DOI | Zbl

[24.] Kesten, H. Uniform distribution mod1, Ann. Math., Volume 71 (1960), pp. 445-471 | MR | DOI | Zbl

[25.] H. Kesten, Uniform distribution mod1, II, Acta Arith., 7 (1961/1962), 355–380.

[26.] Khintchine, A. Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math. Z., Volume 18 (1923), pp. 289-306 | MR | DOI | JFM

[27.] Kingman, J. Poisson Processes, 3, Oxford Univ. Press, New York, 1993 (104 pp.) | Zbl

[28.] Kleinbock, D. Y.; Margulis, G. A. Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinai’s Moscow Seminar on Dynamical Systems, 171, 1996, pp. 141-172

[29.] Kleinbock, D. Y.; Margulis, G. A. Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999), pp. 451-494 | MR | DOI

[30.] Koksma, J. F. Diophantische Approximationen, IV, 1936 (Heft 4, Berlin) | Zbl

[31.] Marklof, J. The n-point correlations between values of a linear form, Ergod. Theory Dyn. Syst., Volume 20 (2000), pp. 1127-1172 | MR | DOI

[32.] Marklof, J. Almost modular functions and the distribution of n 2 x modulo one, Int. Math. Res. Not., Volume 39 (2003), pp. 2131-2151 | DOI

[33.] Marklof, J. Kinetic limits of dynamical systems, Proc. Symp. Pure Math., Volume 87 (2015), pp. 195-223 | MR | DOI

[34.] Marklof, J.; Vinogradov, I. Spherical averages in the space of marked lattices, Geom. Dedic., Volume 186 (2017), pp. 75-102 | MR | DOI

[35.] Ostrowski, A. Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), pp. 77-98 | MR | DOI

[36.] Pitskel, B. S. Poisson limit law for Markov chains, Ergod. Theory Dyn. Syst., Volume 11 (1991), pp. 501-513 | MR | DOI

[37.] Rogers, C. A. The number of lattice points in a set, Proc. Lond. Math. Soc., Volume 6 (1956), pp. 305-320 | MR | DOI

[38.] Roth, K. F. On irregularities of distribution, Mathematika, Volume 1 (1954), pp. 73-79 | MR | DOI

[39.] Samorodnitsky, G.; Taqqu, M. Stable Non-gaussian Random Processes, Chapman & Hall/CRC, London, 1994 (640 pp.) | Zbl

[40.] Schmidt, W. Metrical theorems on fractional parts of sequences, Trans. Am. Math. Soc., Volume 110 (1964), pp. 493-518 | MR | DOI

[41.] Siegel, C. L. A mean value theorem in geometry of numbers, Ann. Math., Volume 46 (1945), pp. 340-347 | MR | DOI

[42.] I. Vinogradov, Limiting distribution of visits of several rotations to shrinking intervals. Preprint.

Cité par Sources :