Article
Generic regularity of free boundaries for the obstacle problem
Publications Mathématiques de l'IHÉS, Tome 132 (2020), pp. 181-292

The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in 𝐑 n . By classical results of Caffarelli, the free boundary is C outside a set of singular points. Explicit examples show that the singular set could be in general (n-1)-dimensional—that is, as large as the regular set. Our main result establishes that, generically, the singular set has zero n-4 measure (in particular, it has codimension 3 inside the free boundary). Thus, for n4, the free boundary is generically a C manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the generic regularity of free boundaries in dimensions n4.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-020-00119-9
@article{PMIHES_2020__132__181_0,
     author = {Figalli, Alessio and Ros-Oton, Xavier and Serra, Joaquim},
     title = {Generic regularity of free boundaries for the obstacle problem},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {181--292},
     year = {2020},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {132},
     doi = {10.1007/s10240-020-00119-9},
     mrnumber = {4179834},
     zbl = {1456.35234},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-020-00119-9/}
}
TY  - JOUR
AU  - Figalli, Alessio
AU  - Ros-Oton, Xavier
AU  - Serra, Joaquim
TI  - Generic regularity of free boundaries for the obstacle problem
JO  - Publications Mathématiques de l'IHÉS
PY  - 2020
SP  - 181
EP  - 292
VL  - 132
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-020-00119-9/
DO  - 10.1007/s10240-020-00119-9
LA  - en
ID  - PMIHES_2020__132__181_0
ER  - 
%0 Journal Article
%A Figalli, Alessio
%A Ros-Oton, Xavier
%A Serra, Joaquim
%T Generic regularity of free boundaries for the obstacle problem
%J Publications Mathématiques de l'IHÉS
%D 2020
%P 181-292
%V 132
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-020-00119-9/
%R 10.1007/s10240-020-00119-9
%G en
%F PMIHES_2020__132__181_0
Figalli, Alessio; Ros-Oton, Xavier; Serra, Joaquim. Generic regularity of free boundaries for the obstacle problem. Publications Mathématiques de l'IHÉS, Tome 132 (2020), pp. 181-292. doi: 10.1007/s10240-020-00119-9

[ALS13] Andersson, J.; Lindgren, E.; Shahgholian, H. Optimal regularity for the no-sign obstacle problem, Comm. Pure Appl. Math., Volume 66 (2013), pp. 245-262 | MR | DOI | Zbl

[ACS08] Athanasopoulos, I.; Caffarelli, L.; Salsa, S. The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math., Volume 130 (2008), pp. 485-498 | MR | Zbl | DOI

[Bai74] Baiocchi, C. Free boundary problems in the theory of fluid flow through porous media, Proceedings of the ICM, 1974 | MR | Zbl

[BK74] H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1973/1974), 831–844. | MR

[BZ80] Burago, Y. D.; Zallager, V. A. Geometric Inequalities, 285, Springer, Berlin, 1980

[Caf77] Caffarelli, L. The regularity of free boundaries in higher dimensions, Acta Math., Volume 139 (1977), pp. 155-184 | MR | DOI | Zbl

[Caf98] Caffarelli, L. The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998), pp. 383-402 | MR | Zbl | DOI

[CC95] Caffarelli, L.; Cabré, X. Fully Nonlinear Elliptic Equations, 43, American Mathematical Society, Providence, 1995 | Zbl | MR

[CKS00] Caffarelli, L.; Karp, L.; Shahgholian, H. Regularity of a free boundary with applications to the Pompeiu problem, Ann. Math., Volume 151 (2000), pp. 269-292 | MR | Zbl | DOI

[CR76] Caffarelli, L.; Rivière, N. Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 3 (1976), pp. 289-310 | MR | Zbl | Numdam

[CR77] Caffarelli, L.; Rivière, N. Asymptotic behavior of free boundaries at their singular points, Ann. of Math., Volume 106 (1977), pp. 309-317 | MR | DOI | Zbl

[CSS08] Caffarelli, L.; Salsa, S.; Silvestre, L. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., Volume 171 (2008), pp. 425-461 | MR | DOI | Zbl

[CJK07] Choi, S.; Jerison, D.; Kim, I. Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface, Amer. J. Math., Volume 129 (2007), pp. 527-582 | MR | DOI | Zbl

[CSV18] Colombo, M.; Spolaor, L.; Velichkov, B. A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal., Volume 28 (2018), pp. 1029-1061 | MR | DOI | Zbl

[DL76] Duvaut, G.; Lions, J. L. Inequalities in Mechanics and Physics, Springer, Berlin, 1976 | MR | Zbl | DOI

[Eva10] Evans, L. C. Partial Differential Equations, 19, American Mathematical Society, Providence, 2010 (xxii+749 pp.) | Zbl | MR

[Fed69] Federer, H. Geometric Measure Theory, Springer, Berlin, 1969 | Zbl | MR

[Fef09] Fefferman, C. Extension of C m,ω -smooth functions by linear operators, Rev. Mat. Iberoam., Volume 25 (2009), pp. 1-48 | MR | DOI | Zbl

[FS19] Figalli, A.; Serra, J. On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., Volume 215 (2019), pp. 311-366 | MR | DOI | Zbl

[FS18] Focardi, M.; Spadaro, E. On the measure and structure of the free boundary of the lower dimensional obstacle problem, Arch. Rat. Mech. Anal., Volume 230 (2018), pp. 125-184 | MR | DOI | Zbl

[Fri82] Friedman, A. Variational Principles and Free Boundary Problems, Wiley, New York, 1982 | Zbl

[HS1898] H. S. H. Shaw, Investigation of the nature of surface resistance of water and of stream-line motion under certain experimental conditions, Inst. NA. (1898).

[GP09] Garofalo, N.; Petrosyan, A. Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., Volume 177 (2009), pp. 415-461 | MR | Zbl | DOI

[Giu84] Giusti, E. Minimal Surfaces and Functions of Bounded Variation, 80, Birkhäuser, Boston, 1984 | DOI | Zbl

[Kin73] Kinderlehrer, D. How a minimal surface leaves an obstacle, Acta Math., Volume 130 (1973), pp. 221-242 | MR | Zbl | DOI

[KN77] Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Sc. Norm. Sup. Pisa, Volume 4 (1977), pp. 373-391 | MR | Zbl | Numdam

[LS69] Lewy, H.; Stampacchia, G. On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., Volume 22 (1969), pp. 153-188 | MR | Zbl | DOI

[LS67] Lions, J. L.; Stampacchia, G. Variational inequalities, Comm. Pure Appl. Math., Volume 20 (1967), pp. 493-519 | MR | Zbl | DOI

[Mon03] Monneau, R. On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., Volume 13 (2003), pp. 359-389 | MR | DOI | Zbl

[NV17] Naber, A.; Valtorta, D. Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math., Volume 70 (2017), pp. 1835-1897 | MR | DOI | Zbl

[PSU12] Petrosyan, A.; Shahgholian, H.; Uraltseva, N. Regularity of Free Boundaries in Obstacle-Type Problems, 136, AMS, Providence, 2012 | Zbl | DOI

[Rod87] Rodrigues, J. F. Obstacle Problems in Mathematical Physics, 134, North-Holland Publishing Co., Amsterdam, 1987 | DOI | Zbl

[Sak91] Sakai, M. Regularity of a boundary having a Schwarz function, Acta Math., Volume 166 (1991), pp. 263-297 | MR | DOI | Zbl

[Sak93] Sakai, M. Regularity of free boundaries in two dimensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 20 (1993), pp. 323-339 | MR | Zbl | Numdam

[Sch74] Schaeffer, D. G. An example of generic regularity for a nonlinear elliptic equation, Arch. Rat. Mech. Anal., Volume 57 (1974), pp. 134-141 | Zbl | DOI

[Sch76] Schaeffer, D. Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa, Volume 4 (1976), pp. 131-144 | Numdam | Zbl

[Ser15] Serfaty, S. Coulomb Gases and Ginzburg-Landau Vortices, EMS books, Zürich, 2015 | DOI | Zbl

[SU03] Shahgholian, H.; Uraltseva, N. Regularity properties of a free boundary near contact points with the fix boundary, Duke Math. J., Volume 116 (2003), pp. 1-34 | MR | DOI | Zbl

[Sim83] Simon, L. Lectures on Geometric Measure Theory, Australian National University, Canberra, 1983 | Zbl

[Sma93] Smale, N. Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds, Comm. Anal. Geom., Volume 1 (1993), pp. 217-228 | MR | DOI | Zbl

[W99] Weiss, G. A homogeneity improvement approach to the obstacle problem, Invent. Math., Volume 138 (1999), pp. 23-50 | MR | Zbl | DOI

[Whi97] White, B. Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., Volume 488 (1997), pp. 1-35 | MR | Zbl

Cité par Sources :