Guillarmou, Colin 1 ; Rhodes, Rémi 1 ; Vargas, Vincent 1
@article{PMIHES_2019__130__111_0,
author = {Guillarmou, Colin and Rhodes, R\'emi and Vargas, Vincent},
title = {Polyakov{\textquoteright}s formulation of $2d$ bosonic string theory},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {111--185},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {130},
doi = {10.1007/s10240-019-00109-6},
mrnumber = {4028515},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00109-6/}
}
TY - JOUR AU - Guillarmou, Colin AU - Rhodes, Rémi AU - Vargas, Vincent TI - Polyakov’s formulation of $2d$ bosonic string theory JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 111 EP - 185 VL - 130 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-019-00109-6/ DO - 10.1007/s10240-019-00109-6 LA - en ID - PMIHES_2019__130__111_0 ER -
%0 Journal Article %A Guillarmou, Colin %A Rhodes, Rémi %A Vargas, Vincent %T Polyakov’s formulation of $2d$ bosonic string theory %J Publications Mathématiques de l'IHÉS %D 2019 %P 111-185 %V 130 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-019-00109-6/ %R 10.1007/s10240-019-00109-6 %G en %F PMIHES_2019__130__111_0
Guillarmou, Colin; Rhodes, Rémi; Vargas, Vincent. Polyakov’s formulation of $2d$ bosonic string theory. Publications Mathématiques de l'IHÉS, Tome 130 (2019), pp. 111-185. doi: 10.1007/s10240-019-00109-6
[ARS1] Analytic torsion and -torsion of Witt representations on manifolds with cusps, Duke Math. J., Volume 167 (2018), pp. 1883-1950 | MR | Zbl | DOI
[ARS2] P. Albin, F. Rochon and D. Sher, Resolvent, heat kernel and torsion under degeneration to fibered cusps, Mem. Am. Math. Soc., in press. | MR
[Al] Theory of strings with boundaries: Fluctuations, topology and quantum geometry, Nucl. Phys. B, Volume 216 (1983), pp. 125-184 | MR | DOI
[ADJ] Quantum Geometry: a statistical field theory approach, 2005 | Zbl | MR
[ABB] Roaming moduli space using dynamical triangulations, Nucl. Phys. B, Volume 858 (2012), pp. 267-292 | MR | Zbl | DOI
[BeKn] Algebraic geometry and the geometry of quantum strings, Physics Letters B, Volume 168 (1986), pp. 201-206 | MR | Zbl | DOI
[BeCa] The asymptotic number of rooted maps on a surface, J. Comb. Theory, Ser. A, Volume 43 (1986), pp. 244-257 | MR | Zbl | DOI
[Be] N. Berestycki, An elementary approach of Gaussian multiplicative chaos, Electron. Commun. Probab., 22 (2017) | MR
[BiFe] A. Bilal and F. Ferrari, Multi-Loop Zeta function regularization and spectral cutoff in curved spacetime, | arXiv | Zbl
[Bo] Spectral theory of infinite-area hyperbolic surfaces, 256, Birkhäuser Boston, Inc., Boston, 2007 (xii+355 pp.) | Zbl | MR
[Bu1] Asymptotics of small eigenvalues of Riemann surfaces, Bull. Am. Meteorol. Soc., Volume 18 (1988), pp. 39-40 | MR | Zbl | DOI
[Bu2] Small eigenvalues of Riemann surfaces and graphs, Math. Z., Volume 205 (1990), pp. 395-420 | MR | Zbl | DOI
[Cu] A glimpse of the conformal structure of random planar maps, Commun. Math. Phys., Volume 333 (2015), pp. 1417-1463 | MR | Zbl | DOI
[Da] Conformal Field Theories Coupled to Gravity in the Conformal Gauge, Mod. Phys. Lett. A, Volume 3 (1988), pp. 1651-1656 | MR | DOI
[DKRV] Liouville Quantum Gravity on the Riemann sphere, Commun. Math. Phys., Volume 342 (2016), pp. 869-907 | MR | Zbl | DOI
[DRV] Liouville Quantum Gravity on complex tori, J. Math. Phys., Volume 57 (2016) | MR | Zbl | DOI
[DhKu] quantum gravity and Liouville Theory, Mod. Phys. Lett. A, Volume 5 (1990), pp. 1411-1421 | MR | Zbl | DOI
[DhPh] Multiloop amplitudes for the bosonic Polyakov string, Nucl. Phys. B, Volume 269 (1986), pp. 205-234 | MR | DOI
[DhPh2] On determinants of Laplacians on Riemann surfaces, Commun. Math. Phys., Volume 104 (1986), pp. 537-545 | MR | Zbl | DOI
[DhPh3] The geometry of string perturbation theory, Rev. Mod. Phys., Volume 60 (1988), pp. 917-1065 | MR | DOI
[dFMS] Conformal Field Theory, Springer, Berlin, 1997 | Zbl | MR | DOI
[DiKa] Conformal Field Theory and Quantum Gravity or Who’s Afraid of Joseph Liouville?, Nucl. Phys. B, Volume 321 (1989), pp. 509-517 | MR | DOI
[Du1] SLE and the Free Field: partition functions and couplings, J. Am. Math. Soc., Volume 22 (2009), pp. 995-1054 | MR | Zbl | DOI
[DuSh] Liouville Quantum Gravity and KPZ, Invent. Math., Volume 185 (2011), pp. 333-393 | MR | Zbl | DOI
[DRSV1] Critical Gaussian multiplicative chaos: convergence of the derivative martingale, Ann. Probab., Volume 42 (2014), pp. 1769-1808 | MR | Zbl | DOI
[DRSV2] Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula, Commun. Math. Phys., Volume 330 (2014), pp. 283-330 | Zbl | MR | DOI
[DMS] B. Duplantier, J. Miller and S. Sheffield, Liouville quantum gravity as a mating of trees, | arXiv
[FKZ] Random Kähler metrics, Nucl. Phys. B, Volume 869 (2012), pp. 89-110 | Zbl | MR | DOI
[Ga] Lectures on conformal field theory, Quantum fields and strings: A course for mathematicians, Vols. 1, 2 (1999), pp. 727-805 | MR | Zbl
[GuZw] Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., Volume 129 (1995), pp. 364-389 | MR | Zbl | DOI
[HRV] Liouville quantum field theory in the unit disk, Ann. Inst. Henri Poincaré Probab. Stat., Volume 54 (2018), pp. 1694-1730 | MR | Zbl | DOI
[Ji] The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z., Volume 212 (1993), pp. 375-394 | MR | Zbl | DOI
[Ka] Sur le chaos multiplicatif, Ann. Sci. Math. Qué., Volume 9 (1985), pp. 105-150 | MR | Zbl
[Kleb] I. Klebanov, String theory in two dimensions, | arXiv
[KlZe] Heat kernel measures on random surfaces, Adv. Theor. Math. Phys., Volume 20 (2016), pp. 135-164 | MR | Zbl | DOI
[KPZ] Fractal structure of -quantum gravity, Mod. Phys. Lett. A, Volume 3 (1988), pp. 819-826 | MR | DOI
[MaMi] Regularizing the functional integral in -quantum gravity, Mod. Phys. Lett. A, Volume 04 (1989), pp. 1847-1853 | MR | DOI
[MeZh] Boundary Behaviour of Weil–Petersson and Fibre Metrics for Riemann Moduli Spaces, International Mathematics Research Notices, Volume 2019 (2017), pp. 5012-5065 | MR | DOI
[Mi] Tessellations of random maps of arbitrary genus, Ann. Sci. Ec. Norm. Super., Volume 42 (2009), pp. 725-781 | MR | Zbl | Numdam | DOI
[OPS] Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988), pp. 148-211 | MR | Zbl | DOI
[Pa] The Selberg zeta function of a Kleinian group, Number Theory, Trace Formulas and Discrete Groups, Academic Press, Boston, 1989, pp. 409-441 | MR | Zbl
[Pol] J. Polchinski, What is string theory? Lectures presented at the 1994 Les Houches Summer School “Fluctuating Geometries in Statistical Mechanics and Field Theory.” | arXiv | MR
[Po] Quantum geometry of bosonic strings, Phys. Lett. B, Volume 103 (1981), p. 207 | MR | DOI
[RaSi] -torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | MR | Zbl | DOI
[RhVa1] Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 | MR | Zbl | DOI
[RhVa2] R. Rhodes and V. Vargas, Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity, in Les Houches summer school proceedings, | arXiv
[RoVa] Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010), pp. 605-631 | MR | Zbl | DOI
[Sa] Determinants of Laplacians, Commun. Math. Phys., Volume 110 (1987), pp. 113-120 | MR | Zbl | DOI
[SWY] Geometric bounds on low eigenvalues of a compact Riemann surface, Geometry of the Laplace operator, Proc. Sympos. Pure Math, 36, AMS, Providence, 1980, pp. 279-285 | MR | Zbl | DOI
[Sc] On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry, J. Funct. Anal., Volume 236 (2006), pp. 120-160 | MR | Zbl | DOI
[Sha] On Gaussian multiplicative chaos, Journal of Functional Analysis, Volume 270 (2016), pp. 3224-3261 | MR | Zbl | DOI
[She] Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007), pp. 521-541 | MR | Zbl | DOI
[TaTe] Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces, Commun. Math. Phys., Volume 268 (2006), pp. 135-197 | MR | Zbl | DOI
[Tr] Teichmüller theory in Riemannian Geometry, ETH Zürich, Birkhäuser Verlag, Basel, 1992 | Zbl | MR | DOI
[Wo1] On the Weil–Petersson geometry of the moduli space of curves, Am. J. Math., Volume 107 (1985), pp. 969-997 | MR | Zbl | DOI
[Wo2] Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Commun. Math. Phys., Volume 112 (1987), pp. 283-315 | MR | Zbl | DOI
[Wo3] The hyperbolic metric and the geometry of the universal curve, J. Differ. Geom., Volume 31 (1990), pp. 417-472 | MR | Zbl | DOI
Cité par Sources :





