We prove a new kind of stabilisation result, “secondary homological stability,” for the homology of mapping class groups of orientable surfaces with one boundary component. These results are obtained by constructing CW approximations to the classifying spaces of these groups, in the category of -algebras, which have no -cells below a certain vanishing line.
Galatius, Søren 1 ; Kupers, Alexander 1 ; Randal-Williams, Oscar 1
@article{PMIHES_2019__130__1_0,
author = {Galatius, S{\o}ren and Kupers, Alexander and Randal-Williams, Oscar},
title = {$E_{2}$-cells and mapping class groups},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--61},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {130},
doi = {10.1007/s10240-019-00107-8},
mrnumber = {4028513},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00107-8/}
}
TY - JOUR
AU - Galatius, Søren
AU - Kupers, Alexander
AU - Randal-Williams, Oscar
TI - $E_{2}$-cells and mapping class groups
JO - Publications Mathématiques de l'IHÉS
PY - 2019
SP - 1
EP - 61
VL - 130
PB - Springer Berlin Heidelberg
PP - Berlin/Heidelberg
UR - https://www.numdam.org/articles/10.1007/s10240-019-00107-8/
DO - 10.1007/s10240-019-00107-8
LA - en
ID - PMIHES_2019__130__1_0
ER -
%0 Journal Article
%A Galatius, Søren
%A Kupers, Alexander
%A Randal-Williams, Oscar
%T $E_{2}$-cells and mapping class groups
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 1-61
%V 130
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-019-00107-8/
%R 10.1007/s10240-019-00107-8
%G en
%F PMIHES_2019__130__1_0
Galatius, Søren; Kupers, Alexander; Randal-Williams, Oscar. $E_{2}$-cells and mapping class groups. Publications Mathématiques de l'IHÉS, Tome 130 (2019), pp. 1-61. doi: 10.1007/s10240-019-00107-8
[ABE08] Homology of the mapping class group for surfaces of genus 2 with a boundary curve, The Zieschang Gedenkschrift., 14, Geom. Topol. Publ., Coventry, 2008, pp. 1-25 | Zbl | MR
[AGLV98] Singularity Theory. I, Springer, Berlin, 1998 (translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences) | Zbl | MR | DOI
[BC91] Mapping class groups of low genus and their cohomology, Mem. Am. Math. Soc., Volume 90 (1991) (iv+104) | MR | Zbl
[BH15] F. J. Boes and A. Hermann, Moduli spaces of Riemann surfaces—homology computations and homology operations, 2015, http://www.math.uni-bonn.de/people/boes/masterarbeit_boes_hermann.pdf.
[Bol12] Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z., Volume 270 (2012), pp. 297-329 | MR | Zbl | DOI
[CGP18] M. Chan, S. Galatius and S. Payne, Tropical curves, graph homology, and top weight cohomology of , | arXiv
[Cha80] Homology stability for of a Dedekind domain, Invent. Math., Volume 56 (1980), pp. 1-17 | MR | Zbl | DOI
[CLM76] The Homology of Iterated Loop Spaces, 533, Springer, Berlin/New York, 1976 | Zbl | MR | DOI
[Fab90] Chow rings of moduli spaces of curves. II. Some results on the Chow ring of , Ann. Math. (2), Volume 132 (1990), pp. 421-449 | MR | Zbl | DOI
[Fab99] A conjectural description of the tautological ring of the moduli space of curves, Moduli of Curves and Abelian Varieties, E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109-129 | Zbl | MR | DOI
[FS97] The braid structure of mapping class groups, Sci. Bul. Josai Univ., Volume 2 (1997), pp. 21-29 Surgery and geometric topology (Sakado, 1996) | MR | Zbl
[GJ94] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, | arXiv
[GKRW18a] S. Galatius, A. Kupers and O. Randal-Williams, Cellular -algebras, | arXiv
[GKRW18b] S. Galatius, A. Kupers and O. Randal-Williams, -cells and general linear groups of finite fields, | arXiv
[God07] The unstable integral homology of the mapping class groups of a surface with boundary, Math. Ann., Volume 337 (2007), pp. 15-60 | MR | Zbl | DOI
[Gra73] Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Éc. Norm. Supér. (4), Volume 6 (1973), pp. 53-66 | Zbl | MR | Numdam | DOI
[Har83] The second homology group of the mapping class group of an orientable surface, Invent. Math., Volume 72 (1983), pp. 221-239 | MR | Zbl | DOI
[Har85] Stability of the homology of the mapping class groups of orientable surfaces, Ann. Math. (2), Volume 121 (1985), pp. 215-249 | MR | Zbl | DOI
[Har91] The third homology group of the moduli space of curves, Duke Math. J., Volume 63 (1991), pp. 25-55 | MR | Zbl | DOI
[Har93] J. Harer, Improved stability for the homology of the mapping class groups of surfaces, preprint (1993).
[Hep16] R. Hepworth, On the edge of the stable range, | arXiv
[Iva93] On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Volume 150 (1993), pp. 149-194 | MR | Zbl | DOI
[Kaw08] On the stable cohomology algebra of extended mapping class groups for surfaces, Groups of Diffeomorphisms, 52, Math. Soc. Japan, Tokyo, 2008, pp. 383-400 | Zbl | MR
[KM96] N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford–Morita–Miller classes, 1996, http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2001-13.pdf. | MR | Zbl
[KM18] -cell attachments and a local-to-global principle for homological stability, Math. Ann., Volume 370 (2018), pp. 209-269 | MR | Zbl | DOI
[Kor02] Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math., Volume 26 (2002), pp. 101-114 | MR | Zbl
[Kra17] Homological stability of topological moduli spaces, Geometry & Topology, Volume 23 (2019), pp. 2397-2474 | MR | Zbl | DOI
[KS03] The second homology groups of mapping class groups of orientable surfaces, Math. Proc. Camb. Philos. Soc., Volume 134 (2003), pp. 479-489 | Zbl | MR | DOI
[KU98] Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J., Volume 21 (1998), pp. 372-380 | MR | Zbl | DOI
[Lim64] On the local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 38 (1964), pp. 163-164 | MR | Zbl | DOI
[Loo93] Cohomology of and , Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Volume 150 (1993), pp. 205-228 | Zbl | MR
[Loo95] On the tautological ring of , Invent. Math., Volume 121 (1995), pp. 411-419 | MR | Zbl | DOI
[Loo13] Connectivity of complexes of separating curves, Groups Geom. Dyn., Volume 7 (2013), pp. 443-451 | MR | Zbl | DOI
[Mey73] Die Signatur von Flächenbündeln, Math. Ann., Volume 201 (1973), pp. 239-264 | MR | Zbl | DOI
[Mil86] The homology of the mapping class group, J. Differ. Geom., Volume 24 (1986), pp. 1-14 | MR | Zbl | DOI
[Min13] A brief introduction to mapping class groups, Moduli Spaces of Riemann Surfaces, 20, Am. Math. Soc., Providence, 2013, pp. 5-44 | MR | Zbl | DOI
[Mor86] On the homology groups of the mapping class groups of orientable surfaces with twisted coefficients, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 62 (1986), pp. 148-151 | MR | Zbl | DOI
[Mor87] Characteristic classes of surface bundles, Invent. Math., Volume 90 (1987), pp. 551-577 | MR | Zbl | DOI
[Mor89] Families of Jacobian manifolds and characteristic classes of surface bundles. I, Ann. Inst. Fourier (Grenoble), Volume 39 (1989), pp. 777-810 | MR | Zbl | Numdam | DOI
[Mor03] Generators for the tautological algebra of the moduli space of curves, Topology, Volume 42 (2003), pp. 787-819 | MR | Zbl | DOI
[MW07] The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. Math. (2), Volume 165 (2007), pp. 843-941 | MR | Zbl | DOI
[MW16] J. Miller and J. C. H. Wilson, Higher order representation stability and ordered configuration spaces of manifolds, Geom. Topol. (2016), to appear, | arXiv | MR
[O’M78] Symplectic Groups, 16, Am. Math. Soc., Providence, 1978 | Zbl | MR | DOI
[Pat17] P. Patzt, Central stability homology, | arXiv
[Pit99] Un calcul élémentaire de pour , C. R. Acad. Sci., Sér. 1 Math., Volume 329 (1999), pp. 667-670 | MR | Zbl
[Qui78] Homotopy properties of the poset of nontrivial -subgroups of a group, Adv. Math., Volume 28 (1978), pp. 101-128 | MR | Zbl | DOI
[RW12] Relations among tautological classes revisited, Adv. Math., Volume 231 (2012), pp. 1773-1785 | MR | Zbl | DOI
[RW16] Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc., Volume 18 (2016), pp. 1-81 | MR | Zbl | DOI
[RWW17] Homological stability for automorphism groups, Adv. Math., Volume 318 (2017), pp. 534-626 | MR | Zbl | DOI
[Sak12] Lagrangian mapping class groups from a group homological point of view, Algebraic Geom. Topol., Volume 12 (2012), pp. 267-291 | MR | Zbl | DOI
[Sma59] Diffeomorphisms of the -sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | MR | Zbl | DOI
[Tom05] Rational cohomology of the moduli space of genus 4 curves, Compos. Math., Volume 141 (2005), pp. 359-384 | MR | Zbl | DOI
[vdKL11] Spherical complexes attached to symplectic lattices, Geom. Dedic., Volume 152 (2011), pp. 197-211 | MR | Zbl | DOI
[Wah13] Homological stability for mapping class groups of surfaces, Handbook of Moduli. Vol. III, 26, International Press, Somerville, 2013, pp. 547-583 | Zbl | MR
[Waj99] An elementary approach to the mapping class group of a surface, Geom. Topol., Volume 3 (1999), pp. 405-466 | MR | Zbl | DOI
[Wan11] R. Wang, Homology Computations for Mapping Class Groups, in Particular for, PhD Thesis, Universität Bonn, 2011.
Cité par Sources :





