Let be a smooth connected projective manifold, together with an snc orbifold divisor , such that the pair is log-canonical. If is pseudo-effective, we show, among other things, that any quotient of its orbifold cotangent bundle has a pseudo-effective determinant. This improves considerably our previous result (Campana and Păun in Ann. Inst. Fourier. 65:835, 2015), where generic positivity instead of pseudo-effectivity was obtained. One of the new ingredients in the proof is a version of the Bogomolov-McQuillan algebraicity criterion for holomorphic foliations whose minimal slope with respect to a movable class (instead of an ample complete intersection class) is positive.
Campana, Frédéric 1 ; Păun, Mihai 1
@article{PMIHES_2019__129__1_0,
author = {Campana, Fr\'ed\'eric and P\u{a}un, Mihai},
title = {Foliations with positive slopes and birational stability of orbifold cotangent bundles},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--49},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {129},
doi = {10.1007/s10240-019-00105-w},
mrnumber = {3949026},
zbl = {1423.14109},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00105-w/}
}
TY - JOUR AU - Campana, Frédéric AU - Păun, Mihai TI - Foliations with positive slopes and birational stability of orbifold cotangent bundles JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 1 EP - 49 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-019-00105-w/ DO - 10.1007/s10240-019-00105-w LA - en ID - PMIHES_2019__129__1_0 ER -
%0 Journal Article %A Campana, Frédéric %A Păun, Mihai %T Foliations with positive slopes and birational stability of orbifold cotangent bundles %J Publications Mathématiques de l'IHÉS %D 2019 %P 1-49 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-019-00105-w/ %R 10.1007/s10240-019-00105-w %G en %F PMIHES_2019__129__1_0
Campana, Frédéric; Păun, Mihai. Foliations with positive slopes and birational stability of orbifold cotangent bundles. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 1-49. doi: 10.1007/s10240-019-00105-w
[1.] E. A.-F. Campana, Characteristic foliations on smooth non-uniruled divisors on projective hyperkähler manifolds, | arXiv
[2.] On Fano foliations, Adv. Math., Volume 238 (2013), pp. 70-118 (arXiv:1112.4512) | MR | DOI | Zbl
[3.] Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J., Volume 205 (2012), pp. 25-65 | MR | DOI | Zbl
[4.] B. Berndtsson, M. Păun and X. Wang, Algebraic fiber spaces and curvature of higher direct images, | arXiv
[5.] Existence of minimal models for varieties of log-general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 (arXiv:math/0610203) | MR | DOI | Zbl
[6.] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013), pp. 201-248 (arXiv:math/0405285) | MR | DOI | Zbl
[7.] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, IHES preprint IHES/M/01/07.Février 2001. | MR
[8.] Algebraic leaves of algebraic foliations over number fields, Publ. Math. IHÉS, Volume 93 (2001), pp. 161-221 | MR | Zbl | Numdam | DOI
[9.] , Complex manifolds, foliations and uniformization, Volume 34/35, Soc. Math., Paris (2011), pp. 1-52 (French) [Uniformization of foliations and entire leaves] | MR | Zbl
[10.] Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992), pp. 539-545 (French) [Rational connectedness of Fano manifolds] | Zbl | MR | Numdam | DOI
[11.] Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom., Volume 4 (1995), pp. 487-502 | MR | Zbl
[12.] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004), pp. 499-665 | MR | Zbl | Numdam | DOI
[13.] Orbifoldes géométriques spéciales et classification biméromorphe des variétés Kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011), pp. 809-934 | MR | DOI | Zbl
[14.] Special orbifolds and birational classification: a survey, Eur. Math. Soc., Zurich, 2011, pp. 123-169 (arXiv:1001.3763) | Zbl | MR
[15.] Abelianity conjecture for compact Kähler threefolds, Proceedings of the Edinburgh Mathematical Society, 2014, pp. 1-24 (Special volume dedicated to V. V. Shokurov) | Zbl
[16.] Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry, 417, 2014, pp. 71-91 | Zbl | MR
[17.] Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. ENS, Volume 46 (2013), pp. 877-914 | MR | Zbl
[18.] Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 41-74 | MR | Zbl | Numdam | DOI
[19.] Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier, Volume 65 (2015), pp. 835-861 | MR | DOI | Zbl
[20.] Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds, Compos. Math., Volume 152 (2016), pp. 2350-2370 | MR | DOI | Zbl
[21.] F. Campana, Slope rational connectedness for orbifolds, | arXiv
[22.] B. Claudon, Positivité du cotangent. Bourbaki 2015–2016.
[23.] On foliations with nef anti-canonical bundle, Trans. Am. Math. Soc., Volume 369 (2017), pp. 7765-7787 (arXiv:1507.01348) | MR | DOI | Zbl
[24.] Lectures on vanishing theorems, 20, Birkhäser Verlag, Basel, 1992 | Zbl | MR | DOI
[25.] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003), pp. 57-67 | MR | DOI | Zbl
[26.] Movable curves and semistable sheaves, Int. Math. Res. Not., Volume 2016 (2016), pp. 536-570 (arXiv:1408.4308) | MR | Zbl
[27.] D. Greb and M. Toma, Compact moduli spaces for slope-semistable sheaves, | arXiv
[28.] Cohomological dimension of algebraic varieties, Ann. Math., Volume 88 (1968), pp. 403-450 | MR | DOI | Zbl
[29.] Families over special base manifolds and a conjecture of Campana, Math. Z., Volume 269 (2011), pp. 847-878 | MR | DOI | Zbl
[30.] Rational curves on quasi-projective surfaces, 140, 1999 | MR | Zbl
[31.] Characterization of Abelian varieties, Compos. Math., Volume 43 (1981), pp. 253-276 | MR | Zbl | Numdam
[32.] Introduction to the minimal model problem, Algebraic geometry, Volume 10 (1987), pp. 283-360 | MR | Zbl | DOI
[33.] On the abundance theorem in the case of numerical Kodaira dimension zero, Am. J. Math., Volume 135 (2013), pp. 115-124 | MR | DOI | Zbl
[34.] The structure of surfaces and threefolds mapping to the moduli stack of canonically polarised varieties, Duke Math. J., Volume 155 (2010), pp. 1-33 | MR | DOI | Zbl
[35.] Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Volume 16 (2007), pp. 65-81 | MR | DOI | Zbl
[36.] Rationally connected manifolds. Rationally connected varieties, J. Algebraic Geom., Volume 1 (1992), pp. 429-448 | MR | Zbl
[37.] A. Kuznetsov, e-mail to F. Campana, May 31, 2015.
[38.] R. Lazarsfeld, Positivity in Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics. | MR | Zbl
[39.] Hermitian Yang-Mills connections on non-Kähler manifolds (Yau, S. T., ed.), Mathematical aspects of string theory, World Scientific Publ., London, 1987, pp. 560-573 | MR | Zbl | DOI
[40.] F. Loray, J. Pereira and F. Touzet, Singular foliations with trivial canonical class, | arXiv
[41.] Deformation of a morphism along a foliation, Algebraic geometry bowdoin 1985, 46, 1987, pp. 245-268 | MR | Zbl | DOI
[42.] The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan inequality, Publ. Res. Inst. Math. Sci., Kyoto Univ., Volume 44 (2008), pp. 403-417 | Zbl | MR | DOI
[43.] A numerical criteria for uniruledness, Ann. Math., Volume 124 (1986), pp. 65-69 | MR | DOI | Zbl
[44.] Towards an enumerative geometry of the moduli space of curves (Artin, M.; Tate, J., eds.), Arithmetic and geometry, vol. II, 36, 1983 (Papers Dedicated to I. R. Shafarevich) | MR | Zbl | DOI
[45.] Zariski-decomposition and abundance, 14, 2004 | Zbl | MR
[46.] Viehweg hyperbolicity conjecture is true over compact bases, Adv. Math., Volume 229 (2012), pp. 1640-1642 (arXiv:1109.2835) | MR | DOI | Zbl
[47.] Kodaira dimension and zeros of holomorphic one-forms, Ann. Math., Volume 179 (2014), pp. 1109-1120 | MR | DOI | Zbl
[48.] On a theorem of Campana and Păun, Epiga, Volume 1 (2017), pp. 175-184 | MR | Zbl
[49.] The isotriviality of families of canonically-polarised manifolds over a special quasi-projective base, Compos. Math., Volume 142 (2016), pp. 1421-1434 (arXiv:1310.5391) | MR | Zbl | DOI
[50.] Base spaces of non-isotrivial families of smooth minimal models, Complex geometry, Springer, Göttingen, 2000, pp. 279-328 | MR | Zbl
[51.] Y. Zhu, Log rationally connected surfaces, | arXiv
Cité par Sources :





