Article
Foliations with positive slopes and birational stability of orbifold cotangent bundles
Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 1-49

Let X be a smooth connected projective manifold, together with an snc orbifold divisor Δ, such that the pair (X,Δ) is log-canonical. If K X +Δ is pseudo-effective, we show, among other things, that any quotient of its orbifold cotangent bundle has a pseudo-effective determinant. This improves considerably our previous result (Campana and Păun in Ann. Inst. Fourier. 65:835, 2015), where generic positivity instead of pseudo-effectivity was obtained. One of the new ingredients in the proof is a version of the Bogomolov-McQuillan algebraicity criterion for holomorphic foliations whose minimal slope with respect to a movable class (instead of an ample complete intersection class) is positive.

DOI : 10.1007/s10240-019-00105-w

Campana, Frédéric 1 ; Păun, Mihai 1

1
@article{PMIHES_2019__129__1_0,
     author = {Campana, Fr\'ed\'eric and P\u{a}un, Mihai},
     title = {Foliations with positive slopes and birational stability of orbifold cotangent bundles},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--49},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {129},
     doi = {10.1007/s10240-019-00105-w},
     mrnumber = {3949026},
     zbl = {1423.14109},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-019-00105-w/}
}
TY  - JOUR
AU  - Campana, Frédéric
AU  - Păun, Mihai
TI  - Foliations with positive slopes and birational stability of orbifold cotangent bundles
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 1
EP  - 49
VL  - 129
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-019-00105-w/
DO  - 10.1007/s10240-019-00105-w
LA  - en
ID  - PMIHES_2019__129__1_0
ER  - 
%0 Journal Article
%A Campana, Frédéric
%A Păun, Mihai
%T Foliations with positive slopes and birational stability of orbifold cotangent bundles
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 1-49
%V 129
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-019-00105-w/
%R 10.1007/s10240-019-00105-w
%G en
%F PMIHES_2019__129__1_0
Campana, Frédéric; Păun, Mihai. Foliations with positive slopes and birational stability of orbifold cotangent bundles. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 1-49. doi: 10.1007/s10240-019-00105-w

[1.] E. A.-F. Campana, Characteristic foliations on smooth non-uniruled divisors on projective hyperkähler manifolds, | arXiv

[2.] Araujo, C.; Druel, S. On Fano foliations, Adv. Math., Volume 238 (2013), pp. 70-118 (arXiv:1112.4512) | MR | DOI | Zbl

[3.] Păun, B. B.-M. Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J., Volume 205 (2012), pp. 25-65 | MR | DOI | Zbl

[4.] B. Berndtsson, M. Păun and X. Wang, Algebraic fiber spaces and curvature of higher direct images, | arXiv

[5.] Birkar, C.; Cascini, P.; Hacon, C.; McKernan, J. Existence of minimal models for varieties of log-general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 (arXiv:math/0610203) | MR | DOI | Zbl

[6.] Boucksom, S.; Demailly, J.-P.; Păun, M.; Peternell, T. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013), pp. 201-248 (arXiv:math/0405285) | MR | DOI | Zbl

[7.] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, IHES preprint IHES/M/01/07.Février 2001. | MR

[8.] Bost, J.-B. Algebraic leaves of algebraic foliations over number fields, Publ. Math. IHÉS, Volume 93 (2001), pp. 161-221 | MR | Zbl | Numdam | DOI

[9.] Brunella, M., Complex manifolds, foliations and uniformization, Volume 34/35, Soc. Math., Paris (2011), pp. 1-52 (French) [Uniformization of foliations and entire leaves] | MR | Zbl

[10.] Campana, F. Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992), pp. 539-545 (French) [Rational connectedness of Fano manifolds] | Zbl | MR | Numdam | DOI

[11.] Campana, F. Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom., Volume 4 (1995), pp. 487-502 | MR | Zbl

[12.] Campana, F. Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004), pp. 499-665 | MR | Zbl | Numdam | DOI

[13.] Campana, F. Orbifoldes géométriques spéciales et classification biméromorphe des variétés Kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011), pp. 809-934 | MR | DOI | Zbl

[14.] Campana, F. Special orbifolds and birational classification: a survey, Eur. Math. Soc., Zurich, 2011, pp. 123-169 (arXiv:1001.3763) | Zbl | MR

[15.] Campana, F.; Claudon, B. Abelianity conjecture for compact Kähler threefolds, Proceedings of the Edinburgh Mathematical Society, 2014, pp. 1-24 (Special volume dedicated to V. V. Shokurov) | Zbl

[16.] Campana, F.; Demailly, J. P.; Peternell, T. Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry, 417, 2014, pp. 71-91 | Zbl | MR

[17.] Campana, F.; Guenancia, H.; Păun, M. Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. ENS, Volume 46 (2013), pp. 877-914 | MR | Zbl

[18.] Campana, F.; Peternell, T. Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 41-74 | MR | Zbl | Numdam | DOI

[19.] Campana, F.; Păun, M. Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier, Volume 65 (2015), pp. 835-861 | MR | DOI | Zbl

[20.] Campana, F.; Păun, M. Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds, Compos. Math., Volume 152 (2016), pp. 2350-2370 | MR | DOI | Zbl

[21.] F. Campana, Slope rational connectedness for orbifolds, | arXiv

[22.] B. Claudon, Positivité du cotangent. Bourbaki 2015–2016.

[23.] Druel, S. On foliations with nef anti-canonical bundle, Trans. Am. Math. Soc., Volume 369 (2017), pp. 7765-7787 (arXiv:1507.01348) | MR | DOI | Zbl

[24.] Esnault, H.; Viehweg, E. Lectures on vanishing theorems, 20, Birkhäser Verlag, Basel, 1992 | Zbl | MR | DOI

[25.] Graber, T.; Harris, J.; Starr, J. Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003), pp. 57-67 | MR | DOI | Zbl

[26.] Greb, D.; Kebekus, S.; Peternell, T. Movable curves and semistable sheaves, Int. Math. Res. Not., Volume 2016 (2016), pp. 536-570 (arXiv:1408.4308) | MR | Zbl

[27.] D. Greb and M. Toma, Compact moduli spaces for slope-semistable sheaves, | arXiv

[28.] Hartshorne, R. Cohomological dimension of algebraic varieties, Ann. Math., Volume 88 (1968), pp. 403-450 | MR | DOI | Zbl

[29.] Jabbusch, K.; Kebekus, S. Families over special base manifolds and a conjecture of Campana, Math. Z., Volume 269 (2011), pp. 847-878 | MR | DOI | Zbl

[30.] Keel, S.; Mc Kernan, J. Rational curves on quasi-projective surfaces, 140, 1999 | MR | Zbl

[31.] Kawamata, Y. Characterization of Abelian varieties, Compos. Math., Volume 43 (1981), pp. 253-276 | MR | Zbl | Numdam

[32.] Kawamata, Y.; Matsuki, K.; Matsuda, K. Introduction to the minimal model problem, Algebraic geometry, Volume 10 (1987), pp. 283-360 | MR | Zbl | DOI

[33.] Kawamata, Y. On the abundance theorem in the case of numerical Kodaira dimension zero, Am. J. Math., Volume 135 (2013), pp. 115-124 | MR | DOI | Zbl

[34.] Kebekus, S.; Kovàcs, S. The structure of surfaces and threefolds mapping to the moduli stack of canonically polarised varieties, Duke Math. J., Volume 155 (2010), pp. 1-33 | MR | DOI | Zbl

[35.] Kebekus, S.; Sola-Conde, L.; Toma, M. Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Volume 16 (2007), pp. 65-81 | MR | DOI | Zbl

[36.] Kollár, J.; Miyaoka, Y.; Mori, S. Rationally connected manifolds. Rationally connected varieties, J. Algebraic Geom., Volume 1 (1992), pp. 429-448 | MR | Zbl

[37.] A. Kuznetsov, e-mail to F. Campana, May 31, 2015.

[38.] R. Lazarsfeld, Positivity in Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics. | MR | Zbl

[39.] Li, J.; Yau, S.-T. Hermitian Yang-Mills connections on non-Kähler manifolds (Yau, S. T., ed.), Mathematical aspects of string theory, World Scientific Publ., London, 1987, pp. 560-573 | MR | Zbl | DOI

[40.] F. Loray, J. Pereira and F. Touzet, Singular foliations with trivial canonical class, | arXiv

[41.] Miyaoka, Y. Deformation of a morphism along a foliation, Algebraic geometry bowdoin 1985, 46, 1987, pp. 245-268 | MR | Zbl | DOI

[42.] Miyaoka, Y. The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan inequality, Publ. Res. Inst. Math. Sci., Kyoto Univ., Volume 44 (2008), pp. 403-417 | Zbl | MR | DOI

[43.] Miyaoka, Y.; Mori, S. A numerical criteria for uniruledness, Ann. Math., Volume 124 (1986), pp. 65-69 | MR | DOI | Zbl

[44.] Mumford, D. Towards an enumerative geometry of the moduli space of curves (Artin, M.; Tate, J., eds.), Arithmetic and geometry, vol. II, 36, 1983 (Papers Dedicated to I. R. Shafarevich) | MR | Zbl | DOI

[45.] Nakayama, N. Zariski-decomposition and abundance, 14, 2004 | Zbl | MR

[46.] Patakfalvi, Z. Viehweg hyperbolicity conjecture is true over compact bases, Adv. Math., Volume 229 (2012), pp. 1640-1642 (arXiv:1109.2835) | MR | DOI | Zbl

[47.] Popa, M.; Schnell, C. Kodaira dimension and zeros of holomorphic one-forms, Ann. Math., Volume 179 (2014), pp. 1109-1120 | MR | DOI | Zbl

[48.] Schnell On a theorem of Campana and Păun, Epiga, Volume 1 (2017), pp. 175-184 | MR | Zbl

[49.] Taji, B. The isotriviality of families of canonically-polarised manifolds over a special quasi-projective base, Compos. Math., Volume 142 (2016), pp. 1421-1434 (arXiv:1310.5391) | MR | Zbl | DOI

[50.] Zuo, E. V.-K. Base spaces of non-isotrivial families of smooth minimal models, Complex geometry, Springer, Göttingen, 2000, pp. 279-328 | MR | Zbl

[51.] Y. Zhu, Log rationally connected surfaces, | arXiv

Cité par Sources :