Using Harish-Chandra induction and restriction, we construct a categorical action of a Kac-Moody algebra on the category of unipotent representations of finite unitary groups in non-defining characteristic. We show that the decategorified representation is naturally isomorphic to a direct sum of level 2 Fock spaces. From our construction we deduce that the Harish-Chandra branching graph coincides with the crystal graph of these Fock spaces, solving a recent conjecture of Gerber-Hiss-Jacon. We also obtain derived equivalences between blocks, yielding Broué’s abelian defect group conjecture for unipotent -blocks at linear primes .
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-019-00104-x
Dudas, O. 1 ; Varagnolo, M. 1 ; Vasserot, E. 1
@article{PMIHES_2019__129__129_0,
author = {Dudas, O. and Varagnolo, M. and Vasserot, E.},
title = {Categorical actions on unipotent representations of finite unitary groups},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {129--197},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {129},
doi = {10.1007/s10240-019-00104-x},
mrnumber = {3949029},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00104-x/}
}
TY - JOUR AU - Dudas, O. AU - Varagnolo, M. AU - Vasserot, E. TI - Categorical actions on unipotent representations of finite unitary groups JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 129 EP - 197 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-019-00104-x/ DO - 10.1007/s10240-019-00104-x LA - en ID - PMIHES_2019__129__129_0 ER -
%0 Journal Article %A Dudas, O. %A Varagnolo, M. %A Vasserot, E. %T Categorical actions on unipotent representations of finite unitary groups %J Publications Mathématiques de l'IHÉS %D 2019 %P 129-197 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-019-00104-x/ %R 10.1007/s10240-019-00104-x %G en %F PMIHES_2019__129__129_0
Dudas, O.; Varagnolo, M.; Vasserot, E. Categorical actions on unipotent representations of finite unitary groups. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 129-197. doi: 10.1007/s10240-019-00104-x
[1.] On the decomposition numbers of the Hecke algebra of , J. Math. Kyoto Univ., Volume 36 (1996), pp. 789-808 | MR | DOI | Zbl
[2.] Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, Quantum Groups, 433, Amer. Math. Soc., Providence, 2007, pp. 13-88 | MR | Zbl | DOI
[3.] Computational proof of the Mackey formula for , J. Algebra, Volume 327 (2011), pp. 506-526 | MR | DOI | Zbl
[4.] Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. IHÉS, Volume 97 (2003), pp. 1-59 | Zbl | MR | Numdam | DOI
[5.] Generic blocks of finite reductive groups, Représentations unipotentes génériques et blocs des groupes réductifs finis, Astérisque, Volume 212 (1993), pp. 7-92 | Zbl | MR
[6.] On unipotent blocks and their ordinary characters, Invent. Math., Volume 117 (1994), pp. 149-164 | MR | DOI | Zbl
[7.] Derived equivalences for symmetric groups and -categorification, Ann. Math., Volume 167 (2008), pp. 245-298 | MR | DOI | Zbl
[8.] Methods of Representation Theory. Vol. I,II, John Wiley & Sons, Inc., New York, 1981 (1987) | Zbl | MR
[9.] Harish-Chandra vertices and Steinberg’s tensor product theorem for general linear groups, Proc. Lond. Math. Soc., Volume 75 (1997), pp. 559-599 | MR | DOI | Zbl
[10.] Morita equivalences of Ariki-Koike algebras, Math. Z., Volume 240 (2002), pp. 579-610 | MR | DOI | Zbl
[11.] Generalized Jack polynomials and the representation theory of rational Cherednik algebras, Sel. Math. New Ser., Volume 16 (2010), pp. 791-818 | MR | DOI | Zbl
[12.] Branching functions of and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math., Volume 141 (1999), pp. 322-365 | MR | DOI | Zbl
[13.] The blocks of finite general linear and unitary groups, Invent. Math., Volume 69 (1982), pp. 109-153 | MR | DOI | Zbl
[14.] Brauer trees in classical groups, J. Algebra, Volume 131 (1990), pp. 179-225 | MR | DOI | Zbl
[15.] An Introduction to Algebraic Geometry and Algebraic Groups, 10, Oxford University Press, Oxford, 2003 | Zbl | MR | DOI
[16.] On the decomposition numbers of the finite unitary groups in nondefining characteristic, Math. Z., Volume 207 (1991), pp. 83-89 | MR | DOI | Zbl
[17.] Basic sets of Brauer characters of finite groups of Lie type. II, J. Lond. Math. Soc. (2), Volume 47 (1993), pp. 255-268 | MR | DOI | Zbl
[18.] Modular Harish-Chandra series, Hecke algebras and (generalized) -Schur algebras, Modular Representation Theory of Finite Groups (2001), pp. 1-66 | MR | Zbl
[19.] Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math., Volume 418 (1991), pp. 173-188 | MR | Zbl
[20.] Cuspidal unipotent Brauer characters, J. Algebra, Volume 168 (1994), pp. 182-220 | MR | DOI | Zbl
[21.] Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z., Volume 221 (1996), pp. 353-386 | MR | Zbl | DOI
[22.] Representations of Hecke Algebras at Roots of Unity, 15, Springer, London, 2011 | Zbl | MR | DOI
[23.] Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, 21, The Clarendon Press, Oxford University Press, New York, 2000 | Zbl | MR | DOI
[24.] T. Gerber, G. Hiss and N. Jacon, Harish-Chandra series in finite unitary groups and crystal graphs, | arXiv
[25.] T. Gerber and G. Hiss, Branching graphs for finite unitary groups in non-defining characteristic, | arXiv
[26.] I. Grojnowski, Affine controls the representation theory of the symmetric group and related Hecke algebras, | arXiv
[27.] Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math., Volume 485 (1997), pp. 55-91 | MR | Zbl
[28.] Harish-Chandra series of Brauer characters in a finite group with a split BN-pair, J. Lond. Math. Soc. (2), Volume 48 (1993), pp. 219-228 | MR | DOI | Zbl
[29.] Induced cuspidal representations and generalized Hecke rings, Invent. Math., Volume 58 (1980), pp. 37-64 | MR | DOI | Zbl
[30.] Combinatorics of representations of at , Commun. Math. Phys., Volume 136 (1991), pp. 543-566 | Zbl | MR | DOI
[31.] Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990 | Zbl | MR | DOI
[32.] Perfect bases for integrable modules over generalized Kac-Moody algebras, Algebr. Represent. Theory, Volume 14 (2011), pp. 571-587 | MR | DOI | Zbl
[33.] On crystal bases, Representations of Groups, Proceedings of the 1994 Annual, 16, 1995, pp. 155-197 | MR | Zbl
[34.] On Rouquier Blocks for Finite Classical Groups at Linear Primes, J. Algebra, Volume 432 (2015), pp. 91-128 | MR | DOI | Zbl
[35.] M. Livesey, A note on perfect isometries between finite general linear and unitary groups at unitary primes, | arXiv
[36.] Irreducible representations of finite classical groups, Invent. Math., Volume 43 (1977), pp. 125-175 | MR | DOI | Zbl
[37.] Characters of Reductive Groups over a Finite Field, 107, Princeton University Press, Princeton, 1984 | Zbl | MR | DOI
[38.] The characters of the finite unitary groups, J. Algebra, Volume 49 (1977), pp. 167-171 | MR | DOI | Zbl
[39.] Symmetric Functions and Hall Polynomials, The Clarendon Press, Oxford University Press, New York, 1995 | Zbl | MR
[40.] The representation theory of the Ariki-Koike and cyclotomic -Schur algebras, Representation Theory of Algebraic Groups and Quantum Groups, 40, Math. Soc. Japan, Tokyo, 2004, pp. 261-320 | MR | Zbl | DOI
[41.] R. Rouquier, 2-Kac-Moody algebras, | arXiv
[42.] Categorifications and cyclotomic rational double affine Hecke algebras, Invent. Math., Volume 204 (2016), pp. 671-786 | MR | DOI | Zbl
[43.] Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 147-182 | MR | Zbl | Numdam | DOI
[44.] Heisenberg algebras and rational double affine Hecke algebras, J. Am. Math. Soc., Volume 25 (2012), pp. 959-1031 | MR | DOI | Zbl
[45.] Canonical bases of higher-level -deformed Fock spaces and Kazhdan-Lusztig polynomials, Physical Combinatorics (2000), pp. 249-299 | MR | Zbl | DOI
[46.] X. Yvonne, Bases canoniques d’espaces de Fock de niveau supérieur, Ph.D. thesis, University of Caen, 2005.
Cité par Sources :





