Article
Joinings of higher rank torus actions on homogeneous spaces
Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 83-127

We show that joinings of higher rank torus actions on S-arithmetic quotients of semi-simple or perfect algebraic groups must be algebraic.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-019-00103-y

Einsiedler, Manfred 1 ; Lindenstrauss, Elon 1

1
@article{PMIHES_2019__129__83_0,
     author = {Einsiedler, Manfred and Lindenstrauss, Elon},
     title = {Joinings of higher rank torus actions on homogeneous spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {83--127},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {129},
     doi = {10.1007/s10240-019-00103-y},
     mrnumber = {3949028},
     zbl = {1423.22014},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-019-00103-y/}
}
TY  - JOUR
AU  - Einsiedler, Manfred
AU  - Lindenstrauss, Elon
TI  - Joinings of higher rank torus actions on homogeneous spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 83
EP  - 127
VL  - 129
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-019-00103-y/
DO  - 10.1007/s10240-019-00103-y
LA  - en
ID  - PMIHES_2019__129__83_0
ER  - 
%0 Journal Article
%A Einsiedler, Manfred
%A Lindenstrauss, Elon
%T Joinings of higher rank torus actions on homogeneous spaces
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 83-127
%V 129
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-019-00103-y/
%R 10.1007/s10240-019-00103-y
%G en
%F PMIHES_2019__129__83_0
Einsiedler, Manfred; Lindenstrauss, Elon. Joinings of higher rank torus actions on homogeneous spaces. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 83-127. doi: 10.1007/s10240-019-00103-y

[1.] Aka, M.; Einsiedler, M.; Shapira, U. Integer points on spheres and their orthogonal lattices, Invent. Math., Volume 206 (2016), pp. 379-396 | MR | Zbl | DOI

[2.] Borel, A. Some finiteness properties of adele groups over number fields, Publ. Math. IHES., Volume 16 (1963), pp. 5-30 | MR | Zbl | Numdam | DOI

[3.] Duke, W. Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., Volume 92 (1988), pp. 73-90 | MR | DOI | Zbl

[4.] Einsiedler, M.; Katok, A. Invariant measures on G/Γ for split simple Lie groups G, Commun. Pure Appl. Math., Volume 56 (2003), pp. 1184-1221 (Dedicated to the memory of Jürgen K. Moser) | MR | DOI | Zbl

[5.] Einsiedler, M.; Katok, A. Rigidity of measures—the high entropy case, and non-commuting foliations, probability in mathematics, Isr. J. Math., Volume 148 (2005), pp. 169-238 | Zbl | MR | DOI

[6.] Einsiedler, M.; Lindenstrauss, E. Diagonalizable flows on locally homogeneous spaces and number theory, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1731-1759 | MR | Zbl

[7.] Einsiedler, M.; Lindenstrauss, E. Joinings of higher-rank diagonalizable actions on locally homogeneous spaces, Duke Math. J., Volume 138 (2007), pp. 203-232 | MR | DOI | Zbl

[8.] Einsiedler, M.; Lindenstrauss, E. On measures invariant under diagonalizable actions: the rank-one case and the general low-entropy method, J. Mod. Dyn., Volume 2 (2008), pp. 83-128 | MR | Zbl | DOI

[9.] Einsiedler, M.; Lindenstrauss, E. Diagonal actions on locally homogeneous spaces, Homogeneous Flows, Moduli Spaces and Arithmetic, 10, Am. Math. Soc., Providence, 2010, pp. 155-241 | MR | Zbl

[10.] Einsiedler, M.; Lindenstrauss, E. On measures invariant under tori on quotients of semisimple groups, Ann. Math. (2), Volume 181 (2015), pp. 993-1031 | MR | DOI | Zbl

[11.] Einsiedler, M.; Mohammadi, A. A joinings classification and a special case of Raghunathan’s conjecture in positive characteristic, J. Anal. Math., Volume 116 (2012), pp. 299-334 (with an appendix by Kevin Wortman) | MR | DOI | Zbl

[12.] Einsiedler, M.; Katok, A.; Lindenstrauss, E. Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. Math., Volume 164 (2006), pp. 513-560 | MR | DOI | Zbl

[13.] Einsiedler, M.; Lindenstrauss, E.; Michel, Ph.; Venkatesh, A. Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. Math., Volume 173 (2011), pp. 815-885 | MR | DOI | Zbl

[14.] Eskin, A.; Mozes, S.; Shah, N. Unipotent flows and counting lattice points on homogeneous varieties, Ann. Math. (2), Volume 143 (1996), pp. 253-299 | MR | DOI | Zbl

[15.] Eskin, A.; Mozes, S.; Shah, N. Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., Volume 7 (1997), pp. 48-80 | MR | DOI | Zbl

[16.] Furstenberg, H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, Volume 1 (1967), pp. 1-49 | MR | DOI | Zbl

[17.] Harcos, G.; Michel, Ph. The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. II, Invent. Math., Volume 163 (2006), pp. 581-655 | MR | DOI | Zbl

[18.] Hu, H. Y. Some ergodic properties of commuting diffeomorphisms, Ergod. Theory Dyn. Syst., Volume 13 (1993), pp. 73-100 | MR | DOI | Zbl

[19.] Katok, A.; Spatzier, R. Invariant measures for higher-rank hyperbolic Abelian actions, Ergod. Theory Dyn. Syst., Volume 16 (1996), pp. 751-778 | MR | DOI | Zbl

[20.] Lindenstrauss, E. Invariant measures and arithmetic quantum unique ergodicity, Ann. Math. (2), Volume 163 (2006), pp. 165-219 | MR | DOI | Zbl

[21.] Linnik, Yu. V. Ergodic Properties of Algebraic Fields, 45, Springer New York Inc., New York, 1968 (Translated from the Russian by, Keane, M. S.) | Zbl | MR | DOI

[22.] Margulis, G. A. Discrete Subgroups of Semisimple Lie Groups, 17, Springer, Berlin, 1991 (x+388 pp.) | Zbl | MR | DOI

[23.] Margulis, G. A. Problems and conjectures in rigidity theory, Mathematics: Frontiers and Perspectives, Am. Math. Soc., Providence, 2000, pp. 161-174 | MR | Zbl

[24.] Margulis, G. A.; Tomanov, G. M. Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994), pp. 347-392 | MR | DOI | Zbl

[25.] Margulis, G. A.; Tomanov, G. M. Measure rigidity for almost linear groups and its applications, J. Anal. Math., Volume 69 (1996), pp. 25-54 | MR | DOI | Zbl

[26.] Parry, W. Topics in Ergodic Theory, 75, Cambridge University Press, Cambridge/New York, 1981 | Zbl | MR

[27.] Ratner, M. Horocycle flows, joinings and rigidity of products, Ann. Math., Volume 118 (1983), pp. 277-313 | MR | DOI | Zbl

[28.] Ratner, M. On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., Volume 165 (1990), pp. 229-309 | MR | DOI | Zbl

[29.] Ratner, M. On Raghunathan’s measure conjecture, Ann. Math., Volume 134 (1991), pp. 545-607 | MR | DOI | Zbl

[30.] Ratner, M. Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups, Duke Math. J., Volume 77 (1995), pp. 275-382 | MR | DOI | Zbl

[31.] Rudolph, D. ×2 and ×3 invariant measures and entropy, Ergod. Theory Dyn. Syst., Volume 10 (1990), pp. 395-406 | MR | Zbl | DOI

[32.] Shah, N. Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996), pp. 105-125 | MR | DOI | Zbl

[33.] Springer, T. A. Linear Algebraic Groups, Birkhäuser Boston, Boston, 1998 | Zbl | MR | DOI

[34.] Tits, J. Reductive groups over local fields, Proc. Symp. Pure Math., Volume 33 (1979), pp. 29-69 | MR | DOI | Zbl

[35.] Tomanov, G. Orbits on homogeneous spaces of arithmetic origin and approximations, Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama–Kyoto, 26, Math. Soc. Japan, Tokyo, 1997, pp. 265-297 (2000) | MR | Zbl

[36.] Witte, D. Rigidity of horospherical foliations, Ergod. Theory Dyn. Syst., Volume 9 (1989), pp. 191-205 | MR | DOI | Zbl

[37.] R. Zhang, The associated Dirichlet series1, arXiv.

Cité par Sources :