We study the quasi-periodic Schrödinger equation
Damanik, David 1 ; Goldstein, Michael 2
@article{PMIHES_2014__119__217_0,
author = {Damanik, David and Goldstein, Michael},
title = {On the inverse spectral problem for the quasi-periodic {Schr\"odinger} equation},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {217--401},
year = {2014},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {119},
doi = {10.1007/s10240-013-0058-x},
mrnumber = {3210179},
zbl = {1296.35168},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-013-0058-x/}
}
TY - JOUR AU - Damanik, David AU - Goldstein, Michael TI - On the inverse spectral problem for the quasi-periodic Schrödinger equation JO - Publications Mathématiques de l'IHÉS PY - 2014 SP - 217 EP - 401 VL - 119 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-013-0058-x/ DO - 10.1007/s10240-013-0058-x LA - en ID - PMIHES_2014__119__217_0 ER -
%0 Journal Article %A Damanik, David %A Goldstein, Michael %T On the inverse spectral problem for the quasi-periodic Schrödinger equation %J Publications Mathématiques de l'IHÉS %D 2014 %P 217-401 %V 119 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-013-0058-x/ %R 10.1007/s10240-013-0058-x %G en %F PMIHES_2014__119__217_0
Damanik, David; Goldstein, Michael. On the inverse spectral problem for the quasi-periodic Schrödinger equation. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 217-401. doi: 10.1007/s10240-013-0058-x
[Av1] A. Avila, Global theory of one-frequency Schrödinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity, preprint (2009), | arXiv
[Av2] A. Avila, Global theory of one-frequency Schrödinger operators II: acriticality and finiteness of phase transitions for typical potentials, preprint. | MR
[Av3] A. Avila, Almost reducibility and absolute continuity I, preprint (2010), | arXiv
[Bo] Green’s Function Estimates for Lattice Schrödinger Operators and Applications (2004) | MR | Zbl
[BoJi] Absolutely continuous spectrum for 1D quasi-periodic operators, Invent. Math., Volume 148 (2002), pp. 453-463 | MR | Zbl | DOI
[DiSi] The one dimensional Schrödinger equation with quasiperiodic potential, Funkc. Anal. Prilozh., Volume 9 (1975), pp. 8-21 | Zbl
[DG] D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions of the KdV equation with quasi-periodic initial data, preprint (2012), | arXiv
[El] Floquet solutions for the 1-dimensional quasiperiodic Schrödinger equation, Commun. Math. Phys., Volume 146 (1992), pp. 447-482 | Zbl | DOI
[EK] KAM for the non-linear Schrödinger equation, Ann. Math., Volume 172 (2010), pp. 371-435 | Zbl | DOI
[FrSp] Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., Volume 88 (1983), pp. 151-189 | Zbl | DOI
[FSW] Localization for a class of one dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys., Volume 132 (1990), pp. 5-25 | Zbl | DOI
[HA] Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2,R), Commun. Math. Phys., Volume 287 (2009), pp. 565-588 | Zbl | DOI
[Lax] Integrals of non-linear equations of evolution and solitary waves, Commun. Pure Appl. Math., Volume 21 (1968), pp. 467-490 | Zbl | DOI
Cité par Sources :






