We prove the - and -theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for
Bartels, Arthur 1 ; Lück, Wolfgang 2 ; Reich, Holger 3 ; Rüping, Henrik 2
@article{PMIHES_2014__119__97_0,
author = {Bartels, Arthur and L\"uck, Wolfgang and Reich, Holger and R\"uping, Henrik},
title = {$K$- and \protect\emph{$L$}-theory of group rings over $GL_n ( \mathbf{Z} )$},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {97--125},
year = {2014},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {119},
doi = {10.1007/s10240-013-0055-0},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-013-0055-0/}
}
TY - JOUR
AU - Bartels, Arthur
AU - Lück, Wolfgang
AU - Reich, Holger
AU - Rüping, Henrik
TI - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
JO - Publications Mathématiques de l'IHÉS
PY - 2014
SP - 97
EP - 125
VL - 119
PB - Springer Berlin Heidelberg
PP - Berlin/Heidelberg
UR - https://www.numdam.org/articles/10.1007/s10240-013-0055-0/
DO - 10.1007/s10240-013-0055-0
LA - en
ID - PMIHES_2014__119__97_0
ER -
%0 Journal Article
%A Bartels, Arthur
%A Lück, Wolfgang
%A Reich, Holger
%A Rüping, Henrik
%T $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 97-125
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-013-0055-0/
%R 10.1007/s10240-013-0055-0
%G en
%F PMIHES_2014__119__97_0
Bartels, Arthur; Lück, Wolfgang; Reich, Holger; Rüping, Henrik. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 97-125. doi: 10.1007/s10240-013-0055-0
[1.] A. Bartels, T. Farrell, and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. | arXiv
[2.] On twisted group rings with twisted involutions, their module categories and L-theory, Cohomology of Groups and Algebraic K-Theory (2009), pp. 1-55 | MR | Zbl
[3.] Geodesic flow for CAT(0)-groups, Geom. Topol., Volume 16 (2012), pp. 1345-1391 | MR | Zbl | DOI
[4.] The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. Math. (2), Volume 175 (2012), pp. 631-689 | MR | Zbl | DOI
[5.] The K-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008), pp. 29-70 | MR | Zbl | DOI
[6.] On the Farrell-Jones conjecture and its applications, Topology, Volume 1 (2008), pp. 57-86 | MR | Zbl | DOI
[7.] Coefficients for the Farrell-Jones conjecture, Adv. Math., Volume 209 (2007), pp. 337-362 | MR | Zbl | DOI
[8.] Metric Spaces of Non-Positive Curvature (1999) | MR | Zbl
[9.] Cohomology of Groups (1982) | MR | Zbl
[10.] Algebraic K-theory over the infinite dihedral group: a controlled topology approach, Topology, Volume 4 (2011), pp. 505-528 | MR | Zbl | DOI
[11.] Permutation Groups (1996) | MR | Zbl
[12.] Geometry of Nonpositively Curved Manifolds (1996) | MR | Zbl
[13.] Isomorphism conjectures in algebraic K-theory, J. Am. Math. Soc., Volume 6 (1993), pp. 249-297 | MR | Zbl
[14.] Rigidity for aspherical manifolds with π1⊂GLm(R), Asian J. Math., Volume 2 (1998), pp. 215-262 | MR | Zbl
[15.] The Whitehead groups of braid groups vanish, Int. Math. Res. Not., Volume 10 (2000), pp. 515-526 | MR | Zbl | DOI
[16.] Reduction theory using semistability, Comment. Math. Helv., Volume 59 (1984), pp. 600-634 | MR | Zbl | DOI
[17.] Principles of Algebraic Geometry (1978) | Zbl | MR
[18.] Differential Geometry, Lie Groups, and Symmetric Spaces (1978) | MR | Zbl
[19.] P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, | arXiv
[20.] Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (2005), pp. 269-322 | MR | Zbl
[21.] The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, Handbook of K-Theory, vols. 1, 2 (2005), pp. 703-842 | MR | Zbl
[22.] Algebraic Number Theory (1999) | MR | Zbl
[23.] The Farrell-Jones isomorphism conjecture for 3-manifold groups, K-Theory, Volume 1 (2008), pp. 49-82 | MR | Zbl
[24.] The K-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Am. Math. Soc., Volume 140 (2012), pp. 779-793 | MR | Zbl | DOI
Cité par Sources :





