We prove that the chain-transitive sets of -generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a -perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by -generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in .
@article{PMIHES_2006__104__87_0,
author = {Crovisier, Sylvain},
title = {Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {87--141},
year = {2006},
publisher = {Springer},
volume = {104},
doi = {10.1007/s10240-006-0002-4},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-006-0002-4/}
}
TY - JOUR AU - Crovisier, Sylvain TI - Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 87 EP - 141 VL - 104 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-006-0002-4/ DO - 10.1007/s10240-006-0002-4 LA - en ID - PMIHES_2006__104__87_0 ER -
%0 Journal Article %A Crovisier, Sylvain %T Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms %J Publications Mathématiques de l'IHÉS %D 2006 %P 87-141 %V 104 %I Springer %U https://www.numdam.org/articles/10.1007/s10240-006-0002-4/ %R 10.1007/s10240-006-0002-4 %G en %F PMIHES_2006__104__87_0
Crovisier, Sylvain. Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 87-141. doi: 10.1007/s10240-006-0002-4
1. , , , Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc., 134 (2006), 2229-2237 | Zbl | MR
2. , , , , Generic diffeomorphisms on compact surfaces, Fundam. Math., 187 (2005), 127-159 | Zbl | MR
3. and , Pseudo-orbit shadowing in the C1-topology, to appear in Discrete Cont. Dyn. Syst. | Zbl | MR
4. , , Nongenericity of Ω-stability, Global analysis I, Proc. Symp. Pure Math. AMS, 14 (1970), 5-8 | Zbl
5. , Création de connexions en topologie C1 , Ergodic Theory Dyn. Syst., 21 (2001), 339-381 | Zbl | MR
6. , Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 36 (2003), 173-190 | Zbl | Numdam
7. , , , Dynamiques symplectiques génériques, Ergodic Theory Dyn. Syst., 25 (2005), 1401-1436 | Zbl | MR
8. , , Récurrence et généricité, Invent. Math., 158 (2004), 33-104 | Zbl | MR
9. , , Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math., 143 (1996), 357-396 | Zbl | MR
10. , , On maximal transitive sets of generic diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 96 (2003), 171-197 | Zbl | MR | Numdam | EuDML
11. , , , A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418 | Zbl | MR
12. , , , Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris, 330 (2000), 587-592 | Zbl
13. , Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin - New York (1975) | Zbl | MR
14. , Isolated invariant sets and Morse index, AMS, Providence (1978) | Zbl | MR
15. , , , Homoclinic classes for C1-generic vector fields, Ergodic Theory Dyn. Syst., 23 (2003), 1-13 | Zbl | MR
16. , , Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189 (1995), 409-423 | Zbl | MR
17. , Structural stability of diffeomorphisms on two-manifolds, Invent. Math., 21 (1973), 233-246 | Zbl | MR | EuDML
18. , , Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equations, 15 (2003), 451-471 | Zbl | MR
19. , , , Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31 | Zbl | MR
20. , Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math., 145 (1997), 81-137 | Zbl
21. , Contribution à la théorie des champs génériques, Contrib. Differ. Equ., 2 (1963), 457-484 | Zbl | MR
22. , Contributions to the stability conjecture, Topology, 17 (1978), 383-396 | Zbl | MR
23. , An ergodic closing lemma, Ann. Math., 116 (1982), 503-540 | Zbl | MR
24. , A proof of the C1 stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 161-210 | Zbl | MR | Numdam | EuDML
25. , Tolerance stability conjecture revisited, Topology Appl., 131 (2003), 33-38 | Zbl | MR
26. , Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150 | Zbl | MR
27. , Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18 | Zbl | MR
28. , The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50 (1979), 101-151 | Zbl | MR | Numdam | EuDML
29. , Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc., 110 (1990), 281-284 | Zbl | MR
30. , On the C1 Ω-stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 211-215 | Zbl | Numdam | EuDML
31. , , Structural stability theorem, Proc. Amer. Math. Soc. Symp. Pure Math., 14 (1970), 223-232 | Zbl | MR
32. and , Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. | Zbl | MR
33. , , High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., 140 (1994), 207-250 | Zbl | MR
34. , Shadowing in dynamical systems, Lect. Notes Math., vol. 1706, Springer, Berlin, 1999. | Zbl | MR
35. , The closing lemma, Amer. J. Math., 89 (1967), 956-1009 | Zbl | MR
36. , An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021 | Zbl | MR
37. , , The C1-closing lemma, including hamiltonians, Ergodic Theory Dyn. Syst., 3 (1983), 261-314 | Zbl | MR
38. , A structural stability theorem, Ann. Math., 94 (1971), 447-493 | Zbl | MR
39. , Generic properties of conservative systems, Amer. J. Math., 92 (1970), 562-603 | Zbl | MR
40. , Cr - structural stability implies Kupka-Smale, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 443-449, Academic Press, New York, 1973. | Zbl | MR
41. , Structural stability of C1-diffeomorphisms, J. Differ. Equ., 22 (1976), 28-73 | Zbl | MR
42. , Stability theorems and hyperbolicity in dynamical systems, Rocky Mt. J. Math., 7 (1977), 425-437 | Zbl | MR
43. , Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15 (1995), 735-757 | Zbl | MR
44. , Diffeomorphisms with weak shadowing, Fundam. Math., 168 (2001), 57-75 | Zbl | MR | EuDML
45. , Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 493-514, Academic Press, New York, 1973. | Zbl | MR
46. M. Shub, Topologically transitive diffeomorphisms of T4, Lect. Notes Math., vol. 206, pp. 39-40, Springer, Berlin-New York, 1971.
47. , A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc., 34 (1972), 629-630 | Zbl | MR
48. , Stable manifolds for differential equations and diffeomorphisms, Ann. Sc. Norm. Super. Pisa, 17 (1963), 97-116 | Zbl | MR | Numdam | EuDML
49. , Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 | Zbl | MR
50. , On Zeeman's tolerance stability conjecture, Lect. Notes Math., vol. 197, 209-219, Springer, Berlin, 1971. | Zbl
51. , Tolerance stability, Lect. Notes Math., vol. 468, 293-304, Springer, Berlin, 1975. | Zbl | MR
52. , A uniform C1 connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265 | MR | Zbl
53. , , C1 connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230 | Zbl | MR
54. , On the tolerance stability conjecture, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 663-665, Academic Press, New York, 1973. | Zbl | MR
55. , , An open set of maps for which every point is absolutely non-shadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918 | Zbl | MR
Cité par Sources :






