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MEASURES ON THE GEOMETRIC LIMIT SET IN
HIGHER RANK SYMMETRIC SPACES

Gabriele LINK

Abstract

For a discrete isometry group of a higher rank symmetrie space we present cer-
tain families of measures on its geometrie limit set. We further introducé a notion
of Hausdorff measure and give an estimate of the Hausdorff dimension of the radial
limit set

1. Introduction

Let X be a globally symmetrie space of noncompact type and dX its geometrie
boundary endowed with the cone topology (see [Ba, chapter II]). We dénote by G =
Isom°(X) the connected component of the identity, and let Y c G be a discrete sub-
group. The geometrie limit set of r is defined by I? •= ^~ö n dX where o e X is an
arbitrary point. In order to measure the size of the limit set of discrete isometry groups
of real hyperbolic spaces, S. J. Patterson ([P]) and D. Sullivan ([S]) developed a theory of
conformai densities. These densitjes allow to relate the Hausdorff dimension of the limit
setto the critical exponent of T

S(D := inf{s >0\^2 e-sd{o'yo) < oo}.
yeT

Part of the theory has been extended by P. Albuquerque ([Al]) to Zariski dense discrete
isometry groups of arbitrary symmetrie spaces X = G/K of noncompact type. How-
ever, if the rank of X is'greater than one, the support of a 5(r)-dimensional conformai
density is a proper T-invariant subset of the limit set. In order to obtain densities sup-
ported on every Pinvariant subset of the geometrie limit set, we recenüy constructed
so-called (b, T- Ç)-densities ([Li]). We remark that the projection of these densities to the
Furstenbergboundary gives precisely the "(T, q>) Patterson measures" constructed inde-
pendently by J. F. Quint ([Q]) using diflferent methods. The measures on the Furstenberg
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boundary, however, do not allow to capture an essential pièce of information concerning
the geometry of r-orbits.

In this note we are going to describe the ideas of our construction of (b,T- Ç)-
densities and give some estimâtes on the Hausdorff dimension of the limit set. For a
detailed description and more gênerai results we refer the reader to [Li].

The paper is organized as follows: In section 2 we recall some basic facts about
Riemannian symmetrie spaces of noncompact type. We describe the G-orbit structure
of the geometrie boundary dX and introducé a family of (possibly nonsymmetric) G-
invariant pseudo distances on X. In section 3 we give a définition and describe our
construction of (b, P Ç)-densities. In section 4 we introducé an appropriate notion of
Hausdorff measure and estimate the Hausdorff dimension of the radial limit set.

2. Preliminaries

In this section we recall some basic facts about symmetrie spaces of noncompact
type (see also [H], [BGS], [E]) and fix some notations for the sequel.

2.1. Polar coordinates

Let X be a simply connected symmetrie space of noncompact type with base point
o e X, G = Isom°(X), and K the isotropy subgroup of o in G. It is well-known that G
is a semisimple lie group with trivial center and no compact factors, and K a maximal
compact subgroup of G. Dénote by g and l the Lie algebras of G and K. Since G acts
transitively on X we have the identification X ~ G/K. The geodesie symmetry in o
induces a Cartan involution on g, hence g = t ©p, w h e r e p e g dénotes its - 1 eigenspace.
The tangent space T0X of X in o is identified with p, and the Riemannian exponential
map at o is a diffeomorphism of p onto X. The Killing form of g restricted to p induces
an inner product (-, •> on T0X and hence a G-invariant Riemannian metric on X with
associated distance d. With respect to this metric, X has nonpositive sectional curvature,
and up to rescaling in each factor, this metric is the original one.

Let a c p be a maximal abelian subspace. lts dimension r is called the rank of
X. The choice of an open Weyl chamber a+ c a détermines a Cartan décomposition
G = KeQ+K, where a+ -dénotes the closure of a+. The component of gin a+ is uniquely
determined by g and will be called the Cartan projection H (g). We will dénote by ai the
unit sphère in a.

Let S dénote the set of roots of the pair (g, a), and S+ c Z the set of positive roots
determined by the Weyl chamber a+. We fix a set ofsimple roots {«i, a2,..., ar} of Z+.
For i G {1,2,..., r} we call the unique vector H, G a | with the property aj(Ht) - 0 for
ail j' * i the z'-th maximal singular direction.
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2.2. CompactificationofX

The geometrie boundary dX of X is the set of équivalence classes of asymptotic
geodesie rays endowed with the cone topology. This boundary is homeomorphic to
the unitjtangent space of an arbitrary point in X, hence by the Cartan décomposition
AdtJOÖf dX

For k G K and H G a* we dénote by (k, H) the unique class in dX which contains
the geodesie raycr( t) = keHto,t > 0. We willcallfJ the Cartan projection of (k,H). Note
thatthewritingis notunique, because {k\,H) = (kz,H) if and onlyif fcf1/^ belongs to
the centralizer of H in K.

Put X := X u dX. For x G X and z G ~X we dénote by aXtZ the unique unit speed
geodesie emanating from x which contains z.

The isometry group of X has a natural action by homeomorphisms on the geometrie
boundary, and G- Ç = K- £ for any Ç e dX. Furthermore, G acts transitively on dX if
and onlyif rank(X) = 1.

If r = rank(X) > 1, we define the regular boundary 3Xreg as the set of classes with
Cartan projection H e cip and the f-th maximal singular boundary component dXl

t

1 ^ i ^ r, as the set of classes with Cartan projection Hi G a+ as defined in the previous
section. If r = lf we use the convention 3Xreg = dX.

2.3. Directional distances

Forx,y e X, Ç e SXlet &%(x,y) := lim^oo (d(x,0^(5)) - d(y,ax%(s))} bethe
Büsemann function centered at Ç (compare [Ba, chapter II]). Using these functions we
will construct an important family of (possibly nonsymmetric) pseudo distances which
will play a crucial rôle in the remainder of this note.

DÉFINITION 2.1. — Let% G dX. The directional distance oftheorderedpair{x,y) G
X x X with respect to thesubset G-% £dX is defined by

'- XxX -> IR

(x,y) - 8BG*i(x,y) := supmg.ç(x,y).
geG

Note that in rank one symmetrie spaces G- Ç = dX, and ^Q-% equals the Riemannian
distance d for any Ç G 3X. In gênerai, the corresponding estimate for the Buseman
functions implies &&G%(x>y) ^ d(xfy) for any Ç G dXt x,y G X.

Furthermore, ^G-£ is a (possibly nonsymmetric) G-invariant pseudo distance on X
(for a proof see [L, Proposition 3.7]), and we have

) cos zx(y, G- Ç), where zx{y, G- Ç) := inf z^(



62 G. LINK

In particular, if Hç G a+ dénotes the Cartan projection of £, we have

mG.l{ofkeHo) = {Hç,H) V k G K V H e

If £ G dX\l ^ z < r, wewill Write djinsteadof^G.ç.

3. Construction of (b,T- £)-densities

We dénote bynB the projection nB : 3Xreg - K/M

(k,H) ~

It is well-known (see for example [L, Theorem 5.15], [Be]) that in the higher rank case the
regular geometrie limit set splits as a product KYX (Jf-n a*) where KT= nB (Lrn 3Xreg) and
iî" ç aj is the set of Cartan projections of limit points. In particular, for any H e iï n a*,
Ç = (id, H) G dXTezt the set I r n G- Ç is a T-invariant subset of the limit set isomorphic
toKTx {H}.

In this section we will give an idea of how to construct the following kind of densities
for each T-invariant subset of the regular limit set. Recall that r dénotes the rank of X.

DÉFINITION 3.1. — LetJ^+(dX) dénote the cone of positive finiteBorel measures on
dX,% edXTeëandb= (bl, b1,. ..br) G W.A (b,T- Ç)-density is a continuons map

with the properties

(i)

(n)

(ni)

SUpp(jio) ç

y * Vx = Py-

\ij ) e

li : X -

-î,. for any y e r, jceX,

for any x e X, supp(Ai0).d\xQ

Hère r)i G dX* dénotes the unique point in the i-th maximal singular boundary com-
ponent which is contained in the closure ofthe Weyl chamber at inflnity determined by
n

Remarks. — If r -= 1 then for any Ç e dX we have I? r\' G- % = 1? and the above
définition for a (b,T- Ç)-density is exactly the définition of a £>-dimensional conformai
density.

If r > 1 let Hi dénote the Cartan projection of Ç G dXie& and HitH2,...fHr the
maximal singular directions definedin section 2.1. A (b, T- Ç) -density is an a-dimensional
conformai density with support in G- Ç as defined in [Al] if and only if £ jLj blHf =
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We briefly recall the Patterson-Sullivan construction of 5 (D -dimensional conformai
densities. Dénote by D the unit Dirac measure and by

Ps(x,y) :=

the Poincaré series of E Define on X a family of measures

& : = ^ 7 7 ^ 7 E e-sdix'yo)D(Yo) ,xeX,s>5(T)

supported on the orbit Y- o. We remark that if Pô^(o, o) converges, the définition of
the measures is modified by adding a slowly incrasing function (see [P] for details). Any
weàk limita = (nx)X€X as" s7 tends to 5(1) of the family of measures (Jts

x)xex thenyieldsâ"
8(1) -dimensional conformai density.

3.1. Exponentîal growth rate in direction G- g

If Ç G 3Xreg is given, a necessary condition for a séquence (j/y) c X to converge to
a point rç G G- Çis

zx(yj,G- Ç) := inf zx(yjfgÇ) - 0 for any point xeX.

Hence if the rank of X is greater than one, only the sub set

r(xfy) := {y eT\yy * x, zx(yy,G-%) < <p}, x,y G X ,

for arbitrarily small q? > 0 contributes to the limit set in G- Ç. Therefore, in order to
obtain measures supported on If n G- Ç, one should rather consider sums of the form

yeT(x,y)

instead of using the complete Poincaré series.

It is not possible, however, to obtain a family of r-equivariant measures directly from
such a sum, because l(x, y) is not T-invariant. Furthermoref the exponent of convergence
5^ç(x, y) of Qs^(x} y) dépends on the points x, y G X.

However, the number 5G-Ç(D := lirciinîçp^o 5^^(x,y) is independent ofx, y G X
(see [L, Lemma 6.2]) and wiD be called the exponent of growth of T in direction G- Ç.
Since / \ogAN^(xTyfR)\

5G.%(D = liminf kmsup =-= with

AN*ç(x,y;R) = #{y G T \ R - 1 ̂  d(x,yy) < R, zx(yy, G- Ç) < <p},

this number can also be interpreted as an exponential growth rate of the number of orbit
points close in direction to G- Ç.
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3.2. The modified Poincaré series

FromhereonwefixÇ e 9Xregwith5G^(T) > 0. RecallthatmG-ianddXt<h,...,dr

are the directional distances introduced in section 2.3. In order to have hardly any con-
tribution of éléments far in direction from G- £, i.e. thosewith zx(yy, G- Ç) large, we add
weights

e-T(d{x.yy)-&G.ï(x,yy)) _ e-Td(x,yy){l-caszx(yy,G-%))

with T > 0 large to the terms in the Poincaré series. It turns out that we also have to
introducé more degrees of freedom which is done by replacing the Riemannian distance
d with a linear combination of d\,d2,...dr.

For T > 0 we dénote by &£mf c Rr the set of r-tuples b = (bl, b1,..., br) G W for
which the series

has exponent of convergence equal to one. Notice that #B£.g is independent of x, y € X
by the triangle inequalities for d, &8G- % and d\t d-i,... dT.

It is shown in detail in [Li, section 3.3], that for any b e &£. ç the Patterson-Sullivan
construction yields a family of T-equivariant measures ix ~ iAh£^ supported on the limit
set. However, these measures are in genera! not absolutely continuous with respect to
each other.

Recall that H\, H2, ...,Hraie the maximal singular directions defined in section 2.1.
Suppose there exists b G IRr and q?0 e (0, n/4) such that

, and ^ ^ ( H ^ H , , ) ^ 5G.n(ï)

for any r\ G dX with Cartan projection Hn e a | and ZO{Ï], G- Ç) < qp0. This condition
on the behavior of the exponent of growth of Tin the neighboring directions of G- £ is
satisfied for Zariski dense discrete groups Tby a resuit of J. F. Quint (see [Q]) and [Li,
Proposition 3.12]). Then there exists To = To(b, qpo) ̂  0 such that for all T ^ To the
family of measures y = ixh£^ is supported on L^n G-% and satisfies

4 ^ & i for any x G X, r? e supp(ji/0).4 ( Ï Ï ) e
d\x0

Hence IJ is a (b; T- Ç)-density.

3.3. The case of lattices

In this section we are going to précise the parameters of (b, Y- Ç)-densities for lat-
tices T c G. The calculation in [A] shows that in this case the exponent of growth 5GÇ(I)
in a direction G- Ç with Cartan projection ifç is equal to p(if|), where p dénotes the sum
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of the positive roots counted with multiplicities. Furthermore, the critical exponent of F
isequalto \\p\\.

Since p is a linear functional on a and the maximal singular directions H\,...,Hr

form a basis of a, there exist parameters bl,1?,...,br G R with the property
Yü^\ bi(Hi>H) = P(ff) for all H e a. This implies that for any Ç G dX the conditions
(*) above are satisfied for arbitrary cpo > 0 with the same tuple b = (bl, è2 , . . . , br).
Using Tsufficiently large, we are ableto construct a {b,Y- Ç)-density for everyÇ G 3Xreg.

According to the second remark after Définition 3.1, the direction H* which sup-
ports the conformai density constructed by E Albuquerque is given by the condition
YJi=\ WHi - aH* forsomeof > 0. Bychoiceofourparameters bweknowthat ]>3f=i blHi
equals the dual vector of p in a+. Hence H* e aj is the normalized dual vector of p and
a = p(H*) = llpll_= 5(D. This shows that any 5(P-dimensionaI conformai density is
supported in G- Ç* for ^ = (id, tf* ) e dXTe*. " "

4. Hausdorff measure

In this section, we deal with an important subset of the limit set, the radial limit
set. We introducé an appropriate notion of Hausdorff measure and Hausdorff dimension
on the geometrie boundary dX and estimate the size of the radial limit set in each G-
invariant subset G- £ £ dX. For so-called radially cocompact groups we obtain a sharp
estimate for the Hausdorff dimension of the radial limit set in any given subset G- Ç ç

4.1. The upper bound on the Hausdorff dimension

We will use the following définition of Hausdorff measure on the geometrie bound-
ary which was introduced by G. Knieper in [Kn, §4]. For Ç G dX, c > 0 and 0 < r < e~c

we call the set

B£<£) := {n G dX | d(a0,n(-\ogr),<T0tz(-\ogr)) < c}

a c-ball of radius r centered at Ç. With this notion of c-balls we define as in the case of
metric spaces Hausdorff measure and Hausdorff dimension on the geometrie boundary.

DÉFINITION 4.1. — LetE beaBorelsubsetofdX,

= inf

Hda(£) := limf_o Hdf (JB) is called the a-dimensional Hausdorff measure of E,
:=inf{« ^ 0 | HdO£(£) < oo} r/ieHausdorff dimension of E.

In this note we are going to use the following définition of radial limit points in order
to simplify the estimâtes concerning the upper bound on the Hausdorff dimension. For
a proof of the more genera! result we refer the interested reader to [Ii, section 6].
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DÉFINITION 4.2. — A point Ç G I r is called a radial limit point for the action ofT if
there exists a séquence (yj) c T which remains at bounded distance ofa geodesie ray with
extremity Ç. The set of radial limit points in dX is denoted by Zfad.

For c > 0, x, y G X with d(x, y) > c we further put

shx(By(c)) := {ri G 3X| d(y,ax,n) < c}.

THEOREM 4.3. — IfT c G is a discrete group and Ç e dXTeë, then the Hausdorjf
dimension of the radial limit set in G- Ç isboundedabovebyÖG-iiT).

Proof — Fix Ç e 3Xres with Cartan projection H% G af, and c > 0 sufficiently
large. By définition of the radial limit set,

Zfd n G- Ç s fï U sho(Byo(c/2)).

Let f > 0 be arbitrarily small. For y e T, put Çy := or^yo(+oo)l ry := e-^(o^o) and let
r := {y e T | ry < s, d{yo,K- a0^) < c/6}. Sincesho(Byo(c/2)) £ J5^(Çy) wehave

Usingthe définition of Hd/' we estimate

Hd?(ipd n G- g) < 2 r« = ^ e-o"^*"» ^ Q«-|(o, o) if çp _ 1 _ .

HenceHdf(LfadnG- Ç) is finite for « > 5%^(of o). Taking the limit as ç? \ Oweconclude
thatthesameistruefor oc > 5G.%(Ï). Letting£ \ 0, we obtain Hda(Zfad n G- Ç) < oo if

, hence dimHd(ip
d nG-%) ^ 5G^(J). D

4.2. Radiallycocompactgroups

For convex cocompact and geometrically finite discrete groups of real hyperbolic
spaces D. Sullivan proved that the Hausdorff dimension of the radial limit set is equal to
the critical exponent ([S, Theorem 25]). In 1990, K. Corlette ([Ç]) extended this resuit to
ail rank one symmetrie spaces of noncompact type. In order to give a sharp estimate for
the Hausdorff dimension of the radial limit set in higher rank symmetrie spaces, we use
the following définition.

DÉFINITION 4.4. — A discrete group T c Gis called radially cocompact if there exists
a constanter > 0 such that for any Y] e Ifad and for ail t > 0 there exists y G Y with
d{yo,aOtï){t)) < cç.
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Examples of radially cocompact groups are convex cocompact isometry groups of rank
one symmetrie spaces, uniform lattices in higher rank symmetrie spaces and products
of convex cocompact groups acting on the Riemannian product of rank one symmetrie
spaces.

For radially cocompact discrete groups F c G, the existence of a (b, F- Ç)-density fj
together with the foUowing theorem (see [Li, section 4.3] for aproof) allowsto also obtain
a lower bound for the Hausdorff dimension of the radial limit set.

THEOREM 4.5 (Shadow lemma). — Let F e G be a Zariski dense discrete subgroup,
Ç G 9Xreg, and y a (b, F- Ç) -density. Then there exists a constant CQ > 0 such thatfor any
c> Co there exists a constantD(c) > 1 with the property

e ^ vo(sho(B
L)(C)

forally G F such that d{otyo) > c andd(yo,K- aOi%) < c/3.

From hère on, we fix c > 2 max{cf, CQ} with cp as in Définition 4.4 and c0 as in
Theorem 4.5.

THEOREM 4.6. — Let F c G be a radially cocompact Zariski dense discrete group,
Ç G dXTeg with Carton projection H% G a*, and /i a (b, Y- Ç) -density. Then there existe a
constant CQ > 0 such thatfor any Borelsubset E £ Ifad

Proof. — Set a := X^=1 V(HuHg). SinceHda(£) ^ Hd"(£ n G- g) andfjo(E) =
lio{E n G- Ç), it suffices to prove the assertion for E ç Ifad n G- Ç. Let e > 0, 5 > 0
arbitrary, and choose a cover of E by balls By.{r\j)trj<Et such that

f. (r)j) n Ifad = 0 , we do not need Bc
r. (rij) to cover E £ Lfad n G- Ç, otherwise we

choose Ç;- G B$.(rij) n E. Since Fis radially cocompact, there exists y j G F such that
d(YjO,<rOfTlj(-\ogrj)) < c. Thisimplies di(otyjo) ^ di(o,aOirij(-logrj)) - chence
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Furthermore, we have B$.(r]j) ç sho(ByjO(2c)), hence E s IJjeN sho(ByjO(2c)). We
conclude

IJ sho(Byj0(2c))

D(2C) Y^ C" E ' s l bidii0>yJ0) < D(2c)

? ^ D(2c)ecm* (Hdf
a(£) + 5) .

J'EN

The claim now follows as 5 s 0 and € \ 0. D

THEOKEM 4.7. — lef T e G be a radially cocompact Zariski dense discrete group,
Ç € 3Xreg and IJL a ( è, Y- Ç) -density constructed as in section 3.2. Then

Proof. — Let £ G 3Xreg with Cartan projection Hg € a]", and JJ a (b,T- Ç)-density
constructed as in section 3.2. From the previous theorem we deduce that for

Hd"(Ifad nG-Z)^ CbAio(lf
ad) ^ 0,

hence dimH d(Ifa d n G - Ç ) ) « = ^ L i **"<«*, J%> ^ «G-E(O by condition (•) of sec-
tion 3.2. The assertion now follows direcüy from Theorem 4.3. D

Using the results of section 3.3, we deduce the following

COROLLARY4.8. — LetX be aglobally symmetrie space ofnoncompact type, and! c
Isom°(X) a cocompact lattice. Then for any% e dXTe& with Cartan projection H^ € a | we
have
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