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MINIMAL SURFACES, THE DIRAC OPERATOR
AND THE PENROSEINEQUALITY

Marc HERZLICH

1. Introduction

AsymptoticaLIy flat Riemannian manifolds are endowed with a rather intriguing nu-
merical invariant, called the moss. It was defined by physicists in General Relativity in
the early 60s [1] and is now known as the most important global invariant of these ma-
nifolds, as shown by the positive mass theorem proved in most cases by R. Schoen and
S.-T. Yau with the help of minimal surfaces [15] and by E. Witten with spinors and the
Dirac operator [16] (see also (3,13]). This fundamental resuit states that, if scalar curva-
ture is non-negative, then the mass must also be non-negative and cannot vanish unless
the manifold is isometric to euclidean flat space. Obtaining better inequalities generally
stands as hard work but R. Penrose [14] conjectured in 1973 that, in dimension 3, the
mass m of any asymptotically flat manifold of non-negative scalar curvature should sa-
tisfy: m ^ ^/A/n, where A is the area of the outermost minimal sphère in M. Moreover,
equality case should be achieved if and only if the metric is a standard slice in the exte-
rior Schwarzschild spacetime. Belief in this inequality was at first supported by physical
considérations: in the relativistic setting, existence of a minimal surface is seen as strong
évidence that the spacetime contains a black hole and the inequality yielded a link bet-
ween its energy (mass) and its entropy (area).

Penrose's inequabty has been reeently rigorously proved by G. Huisken and T. Ilma-
nen [11] and independently by H. Bray 14]. However it still raises some interesting ques-
tions: first of all, is there any Penrose-type inequality for higher-dimensional asympto-
tically flat manifolds? In view of the existing proofs of the positive mass theorem, can
we find a spinorial proof of the inequality, using Witten's techniques? And a last one: the
outermostsurface is defined as the only (collection of) minimal sphere(s) S such that the
unbounded part of M \ S does'nt contain any other minimal surface. Folklore examples
show that the exact Penrose bound cannot be obtained with A replaced by the area of an
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arbitrary minimal sphère: imagine a manifold with one large minimal sphère and ano-
ther smaller sphère in the exterior région of the first one; such an ejtample can easily be
made explicit by using metrics globally conformai to the euclidean space (the relevant
positive mass theorem for C u metrics has been proved by H. Bray and E Finster |51). Ne-
vertheless, the existence of a minimal sphère is strong évidence that our asymptotically
flat manifold is in some sense far away from the euclidean space, since the latter doesn't
contain any compact minima] surface. lts mass being positive due to the positive mass
theorem, it is reasonable to ask whether we can also find a lower bound on the mass in
this setting.

In this note we intend to bring a partial answer, extending a previous work of the
author 18]: our result is valid in any dimension n ^ 3, uses the Dirac operator and spinors
and provides a lower estimate by some function-theoretic quantity, area and a conformai
invariant known as the Yamabe number. Although the minimal hypersurface must satisfy
some extra condition (its Yamabe number must be positive), this still covers a very large
class of examples, e.g. the case of strictly stable minimal hypersurfaces.

Hereafter, we consider a Riemannian asymptotically flat manifold (M,g)> ie. such
that the complement of some compact set is diffeomorphic to the complement of a bail
in R" and the différence between the metric and the euclidean metric in this chart be-
haves like r~T, its first derivatives like r"1""1 and its second derivatives like r~r~2, where
T > (n - 2)f2. If moreover the scalar curvature lives in the Lebesgue space I1, then its
mass is defined [3] as

m(g) = lim — - ƒ (digij - djgiôvJdvcAs,
r-~ 16TT JSr

Sr being a coordinate sphère and v its outer unit normal. If M has an (inner) compact
boundary dM, we define

The constant # (dM) is the normalized inverse of the norm of the Sobolev trace injection
of Hll(M) (the closure of the space of compactly supported smooth functions on M
with respect to the norm \\d f\\Lz) into L2(dM). It is scale-invariant from normalization
and positive from abstract functional analysis. Last, the Yamabe invariant Y {dM) of the
boundary is the infimum of the quantity

where y varies among all metrics conformai to the metric induced by g on the boundary.
It is a conformai invariant of the structure induced on the boundary. We can now state:

THEOREM 1.1. — Let(M,g) be a Riemannian n-dim. asymptotically flat spin mani-
fold with non-negative scalar curvature. Suppose M has a compact (inner) boundary dM
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that is minimal and hos positive Yamabe invariant. Then, ifmass m is defined,

,a(ZM\ I 1 4- 0 f /—Z—Y(^'M\ 1
4TT(/7-2)

Since the function-theoretic quantity <& is scale-invariant and the Yamabe quotient
is a conformai invariant, the lower bound we obtain dépends on the volume of the boun-
dary only in the vol(9M)^rr -term, as expected from scaling considérations. In dimen-
sion 3, this statement reduces to the one proved in (8) because the Yamabe number is a
topological invariant due to the Gauss-Bonnet theorem. This latter result was meant as
a step towards a full proof of the Penrose inequality, since no such proof was available at
that time (be careful our present définition of g differs from the définition of the quan-
tity called a in that paper by a VTr-term). As in dimension 3, equality case is known in
the genera! setting:

THEOREM 1.2. — In case of equality above, the Riemannian manifold {M,g) is iso-
metric to the n-dimensional exterior Schwarzschild-slice, of mass m, M = IR" \ Bo(R)
with

4nm

T) )

2. Proof of the theorem

The proof of our result mainly élaborâtes on the proof given in [8]. It relies on three
steps: proving a positive mass theorem for a metric with boundary; finding a distingui-
shed scalar flat metric in the conformai class of g that plays for it the same role the eu-
clidean metric plays for the Schwarzschild metric and applying to it the positive mass
theorem and estimating the différence between the masses. The novelty lies here in the
introduction of the Yamabe invariant and in the treatment of the equality case in section
3 below.

PROPOSITION 2.1. — Let (M,g) be an asymptotically flat spin manifold with non-
négative scalar curvature and such that the mean curvature H of the boundary satisfies

H ^ (volgOM)r^ï

then its mass is nonnegative. Ifmass is zero, then it is isometric to the complement of a
round bail in the flat euclidean space.

We shall give only short indications on the proof of this theorem, which uses the
spinorial technique introduced by Witten and follows quite closely [81. If <// is any asymp-
totically constant spinor on M and harmonie for the Dirac operator (asymptotic to some



12 M.HERZLICH

constant spinor <//o,-sày),

4n\ipö\
2m = f |Vi//|2 + i ScaF|t//|2 - V / (AB + "i supH)|t//„|2,

where A„ are the eigenvalues of the Dirac operator on the boundary and «//„'s are the
components of tp relative to the décomposition of the spinor bundie in eigensubbundles
on dM. Proving the positive mass theorem then amounts to find a spinor field tpt asymp-
totically constant and harmonie, such that the boundary terms above are non-negative.
This can be done by looking for tp such that all t/yM's corresponding to positive eigenva-
lues vanish (this is the Atiyah-Patodi-Singer boundary condition; it is elliptic for the Dirac
operator of Af [2]). The remaining terms are nonnegative because the first eigenvalue Aj
of the Dirac operator on the boundary satisfies the Hijazi inequality[9,10]:

vol OM) A |A, l ̂  i /^—i
2 V w - 2

The nonnegativity of the boundary term provides both the existence of the required spi-
nor field (by a Lax-Milgram argument) and the positive mass theorem. The equality case
follows from section 3 below and we refer to [8] for more details. •

The construction of the distinguished conformai metric (we shall thereafter dénote
it by g = $4/("-2) where <ï> = 1 + ü) follows from a calculus of variations procedure: we
require g to be asymptotically flat and scalar flat, te.

Tl O

S l ^ ( l ) 0 (1)A.w +
* 4 ( 1 2 - 1 )

and the mean curvature H of its boundary to be constant, equal to (vol^OM))
relation that any round sphère in the flat space satisfies). This translates as

"~l

J ( [
2 V n - 1 \Jm

They are the Euler-Lagrange équations associated to the functional &{ f) defined as

5 ƒ |rfZ |2 +
 8(n _

2
1} ƒ

 ScaJ*(1 + /)2 + \
n-2
l ï - 1

on the weighted Sobolev space H±}(M) = {f € H?oc , \\d f\\L2 + ll-^ll^ < oo},where
r*(x) = (1 + d{o,x)2)ït obeinganyfixedbasepointinM.Aminimizer u can befound
by the usual convergence procedure. It is a solution of the boundary value problem if and
only if we can prove that 1 + u is not identically zero on the boundary (as in the classical
Yamabe problem, the minimizing séquence can hère converge to -1 since the injection
of H}}(M) into Lq(dM), q = ^ ^ , is continuous but not compact). An argument simi-
lar to the one given in [8] handles that problem: if u is identically -1 on the boundary,
then for any solution ft in the weighted space of ^

Aft +. —— Seal* h = 0 on M, dh(v) = -1 on dM,
4 ( n - 1)
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we may find an E * 0 such that &(u + sh) < &(u)t thus contradicting the minimal
property of u. Once this is done, the maximum principle shows 1*+ u never vanishes,
neither on the boundary nor in M, hence providing us with the desired solution. •

End oftheproofofTheorem 1.1. From a straightforward computation which we leave
to the reader, one gets that m(g) - m(g) = 2 T T " ^ 2 ) ^ ( M ) . We shall nowprove:

Indeed, suppose inf ̂  ^ t) volgidM)^ where r] is a small positive constant. We shall
now prove that r] cannot be smaller than an expression involving the Sobolev ratio &.
From the assumption and Hölder's inequality, we can find u such that

- f |rfu|2 + i —-Y(dM) volg(dM)ià (f (1 + M)2>|
2 JM 4M n - 1 * \JdM }

o,

^ ƒ \du\2 + I^ /^- iyoM) ((1 - f"1) volgO

+-J—-Y(dM) ((1 - f) volgOM)"^ï / M2 J
4 V n - 1 V JBAf /

so that

f |dW|2 + i—£ vouaM)-^Ap—^y(3M) /
7M 2 * V n - 1 h

2r] ~ i

The left-hand side is nonnegative if ̂ ^-j^f y (̂ M^Cf - 1 ) < J^OM), and taking the maxi-
mum of the right hand side gives the required inequality. •

3. The case of equality

lf the mass is equal to the lower bound of the theorem, the proof of the last lemma
above shows that the scalar curvature of g must vanish, for, if not the case, the quotient

inf -

would be strictly smaller than 1, thus contradicting the définition of <^(3M). Moreover,
the différence between the masses equals the mass of g, yielding that the mass of g va-
nishes. Equality in the positive mass theorem above implies (Af ,g) is a flat (curvature
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zero) manifold, its boundary has constant mean curvature

H = (vob(3M))"^T . /-—-Y(dM)

and achieves the equality case in the Hijazi inequality. From [10], the induced metric
on the boundary must then be Einstein with positive scalar curvature and by Obata's
theorem, it is a Yamabe metric [12]. From the Gauss équation, we get

n — 1

where 9*'cM is the second fundamental form of dM in the metric g. Let (e,-) be any dia-
gonalizing basis for 0£'dM and (/i,-) the associated system of eigenvalues. From the Gauss
équation above for the Ricci curvature, we get that

Writing

and using the fact that g on the boundary is Yamabe and that the mean curvature is
known, we see that any eigenvalue ,̂- is a root of the polynomial

X2-(n-\)KX- (n-2)K2.

It has two roots, K and ( n - 2)K, hence a priori two possible values for the /i,-. But the sum
of the eigenvalues is the mean curvature H which is equal to K(n - 1). This yields that
the boundary is totally umbilic in g (all eigenvalues of the second fundamental form are
equa]), and the Gauss équation again shows that it has constant curvature. The boundary
must then be isometric to a quotiënt of the round sphère.

If v(r) is the volume of distance sphères from the boundary, the Gromov-Heintze-
Karcher inequality then shows that v(r)/rn~l is a monotone non-increasing function
which startsoffatvaluevol(Sn~1/r,can) andendsatvol(S""1,can) (fromasymptoticflat-
ness). Hence Fis trivial. Gluing in a flat bail produces a complete flat manifold with zero
mass. The classical positive mass theorem then implies that is is isometric to euclidean
space. This enables us to conclude that M has the required topology and gis the eucli-
dean metric.

Moreover, the metric g is globally conformai to g, it has vanishing scalar curvature
and the boundary is minimal, whence we get that the conformai factor 1 + v [v belonging
to the weighted Sobolev space) relating the metric g and the Schwarzschild-like metric
(as defined in the statement of the equality case) is a solution of the boundary value
problem: ùv = 0 on M, dv(v) = 0 on dM. This easily implies that v = 0. •
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4. Final comments

Our results still leave our questions partially unanswered. First, we are still lacking
a complete spinorial proof of the Penrose inequality. The method used here and in 18]
doesn't seem to bring anymore information when the minima] submanifold is the outer-
most one: P. Tod (private communication) constructed examples where & can be made
very small while keeping mass constant. Our methods also seem to be useless when the
boundary is a torus, as the Dirac operator has a non-trivial kernel there. However, work
of M. Cai and G. Galloway shows that mass should also be very large in this case [6, 7J.

The appearance of the Yamabe invariant of the boundary in our result may be seen
as some évidence in favor of the fact that generalization of the Penrose inequality in hi-
gher dimensions might be more complicated than expected. Dimension 3 has indeed the
feature that the boundary has a much simpler geometry than in the gênerai case. This
appeared cruciallyin 18] as well as in Bray/Huisken-llmanenproofs through an essential
use of the Gauss-Bonnet formula. In dimensions n ^ 4, some extra work is probably
needed to gain more intuition and before stating any conjecture.

Acknowledgement. The author is grateful to the Grenoble geometry team for welcoming this
text in the seminar volume.
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