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102 L. BERARD BERGERY & X. CHARUEL

1. Introduction

1.1. Statement of the problem

Let us consider acurve c: I — R”, 1 being an open interval of R, and R” furnished
with its Euclidian structure.

We suppose the curve ¢ to be regular, in the sense that the iterative derivatives
cV(t),...,c"™ (t) are independent vectors for all t € I. Under this assumption, it is
well known that one may build, through a Gram-Schmidt orthonormalization process, a
particular frame associated to the curve c, called the Frenet's frame (for details, cf. {Sp]
for example), and deduce from that curvature and torsion.

In fact, we may restrict our hypothesis of regularity into a weaker one, which we
shall call r-regularity (for 1 < r < n): ¢V(¢),...,c!")(¢) are independent, and
™V (r) € F(t) = (cV(r),...,c"(2)), Vte L

Indeed, it is clear that, in this case, the subspace F.(t) is independent of t ( we can
see this using Taylor formulae), and thus, we may identify F. with R’, so that we are led
to the former case.

Our aim in this article is to generalize this construction of a canonical frame field
associated to each sufficiently regular curve in R” furnished with an arbitrary non de-
generate quadratic form.

REMARK 1.1 Some constructions were already studied in particular cases (see for
example [Y-C W] and [D), chapter 13 problem 8 p. 329). Also, some authors introduce
auxiliary datas along the curve in order to manage with isotropic vectors (see for example
{D-B] chapter 3 and [D-]]). Here, we want to focus on a “canonical” construction, without
any auxiliary choices, which applies to any Minkoswski space and more generally to any
pseudo-Riemannian manifold (see chapter 9).

1.2. Some definitions and notations

Let us consider acurve c: I — R”, where R” is furnished with a fixed non-degene-
rate quadratic form (, ). In all this paper, for any t € I, we will denote by F.(t) the
space generated by the iterative derivatives ¢! (t),...,c¥(¢), and by gi(¢) the Gram’s
determinant of these vectors, i.e. the determinant of the (k, k) matrix ({¢'"(2), ¢! (¢)),
i,je {1,...,k}).

DEFINITION 1.2 A curve will be said “r-pseudo-regular” if
1. isr-regularie. F,_, § F = F4

2. forall k < r, the function gy is either positive, identically zero, or negative.

From now on, the curve ¢ will always be assumed pseudo-regular.
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We may then define a strictly increasing finite sequence (a;) (with @y = 0), corre-
sponding to the successive integers such that g, = 0.

We denote by by := aj4) — ai.. Then, for any integer i from 1 to by — 1, we must have
8a,+i = 0, so that the spaces F, +; are degenerate for the restricted form.

We denote by K, +; the kernel of the restricted form on Fg, +;.

We will prove in the next chapter that we have only 3 possibilities

g Kak+i+l dim I<ak+i +1
Ka+i{= Kgvi+1 Withrespectively  dim Kg,+i+1 = {dim Ky, +;
2 &kﬁ'l“i‘l dlm Kak+i - l

It allows us to define a sequence (d;.) by supposing that
e we have a strictly increasing sequence K;,+1 &€ Ka42 & - - - & Kgp+d,

e this sequence is maximal, i.e. Kz, +d, & Kg,+4,+1, SO that
Kak‘i’dk = Kak+dk+1 or Kak+d;‘ g Kak+dk+l-

Now, it is clear that we have a direct sum decomposition

Fak+i=EzkeKak+i V1 S is dk'
Ncatay !
kernel
Finally, the last notations we need in this article are the following:

© we denote by k. the unique integer such that the last term of the sequence (a;.)
is @y, L€ kma satisfies g; = O for any integer i from a;,,, + 1tor,and g, + 0.

© by convention, we will denote by b,, _ theinteger r — aj,,,.

Let us remark that:

1. kmax may be equal to 0 (with our convention g = 1). In this case, where all sub-
spaces F, are degenerate, the curve c is said totally isotropic.

2. gr may be null or not. In fact, itis clear that g, # 0 <= r = a;_, . Then we will
have to distinguish two cases, according to r = g;_ . ornot.

1.3. Statement of the main result

With the notations above, we will prove that b;. = 24, + 1, and that we have

Kak-i-dkﬂ = IQk"'dk'

More precisely, we will obtain the following sequence:

Kak+1 g e g Kak+d,, = &k"'dk‘l'l 2 Kak+d,,+2 ; ctc -'T—F’ IQk'Fbk—l'
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Finally, we are able to construct a basis adapted to themovingflagF C E C --- C
F,, canonical in a sense that we will precise in chapter 3, given by the following theorem:

ThEOREM 1.3 Given a r-regular, pseudo-regular, curvec: I — R", and a non-degene-
rate quadratic form (, ) on R", there exists a unique moving basis {v;(t),...,v.(t)} on
E. (1) with the following properties:

1 {vn(t),...,v,(1)} is adapted to the flag R C --- C F, i.e. F(t) is generated by
{vi(t),...,vi(2)} for any integer i from 1 tor,andanyt € I

2. the(r,r) matrix U of therestriction of ( , ) to F, with respect to the basis {vy, ..., v;}

s
WU 0 0
0
U=
: : U1 O
\ 0 0 0"“kmax

where %1 = (—l)d"ekUk, €1 = *1 is the sign ofga,m(g,,k)‘l (remark that g,, + 0
Jor0 £ k € kmax — 1), Uy the (by, by.) matrix defined by

( 0 0 (_])dk\
: 0o v 0
0 -1
Ue=| 0 1 0
0 ~1 0
0 / :
\(-1)% 0 - i e .. R,

and0,_g, _ isthe null matrix of type (1 — Qs T — Ay, )

3. the moving basis {vy(t),...,v,(t)} satisfiesV' = AV, ie.
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y;\ Ay Le 0 Q\(y]\

ITC}) A] LC]

0 Lg

0

—r

: : . Lepy ODp  Ley :
v, \0 ... ... ... 0 r/ \v/
with h = ky.y— 1, and the (r;r) matrix A admits a block-decomposition which main
diagonal is made with:

(i) A;isa (b;,b;) matrix, b; = 2d; + 1, with a decomposition

I; Oqg
D; T,

where

e T; is the (d;, d; + 1) matrix with

01 0 ... 0
0 0 1 o0 0
T,=|0 ... ©
0 ... ... ... 0 1

. T, is the (d; + 1, d;) matrix with

/1 0 ... ... 0
0 . 0 ... 0
0 1
\0

e D,isa(d;+1, d; +1) matrix depending on d; functionsY; ; (j=1,...,d;)on 1, in the
form

( 0 eee 0 Y;.4; 0\
0 ve. 0 Yi,d,'—l 0 Yi,d,'
0 0 Yig-2 0 Yig-1 O
0o ... / 0 / 0
0 / 0 / 0 ves
Yo 0 Y, 0 0
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(i) Tisa(r - ay,,,1 — ai,,) matrix depending on r — ay,,, — 1 functions ¢;
i=1,...,r-ay,, —1)onl,intheform

0 1 0 0
0 0 1 0
o ... ... 1
(9] G2 Cr—a,,max—l

Notice that there is no matrixI if (and only if) ay . =T

(iii) e Lc¢; = 3¢;L;, where L; is the unique (b;, bi+1) matrix

0 0 ... 0
o ... ... O
1 0 0

and »; is a positive functionon I.

. fc} = —€;€i4] z,-z;, where'I:,f is the unique (b;+y, b;) matrix
0 0 ... 0
1 0 ... O

and the function z; is the same as in the matrix Lc;.

2. A preliminary study of kernels

Letusrecall thatfor 1 < i < by — 1, the space F,,4; is degenerate for the form (, ),
with kernel Ky, +;. Since Fy +i41 = Fopti ® (c!%*71) jtis clear that we have either

dim Ky, +i+1 = dim Ky, +;+ 1, dim Ky, +i+1 = dim Ky, 44, Or dim Kg, 441 = dim Ky, 4 — 1.

More precisely, we have the following result:
LEMMA 2.1 Either Kz +i C Koy +i+1 07 Kgyvi = Kgptiv1 07 Kgpvi O Kapvi-

Proof. If ¢!%+i*1) js orthogonal to F;,+;, we then have either (c(@*#+1) clati+l)y =
0, in which case Kyp4i+1 = Kapei @ (%) or [c(@*#*)|2 & 0, and then K, +i =
Ky +ix1. Now, if ¢!%*#1) js not orthogonal to F, +;, let z € Ky 4i+1. Wehave z = y +
Aclat*D) with ye F,4i,andA € R. We have (y + Acl%**D) x) = 0Vx € Fyqi
particulary, for x € K+, we obtain (Ac!%*™*1), x) = 0. Thus, if c¢!***1) js orthogonal
10 K, +i, we have Ky4i € Kgpainr. If ¢4+ s not orthogonal to K, +;, the equality



A generalization of Frenet's frame ... 107

(Act@**V) x) = 0,Vx € K, +;implies A = 0. In this case, we deduce z = y+Acl%+*1) =
Y € Fa+; and z satisfies (z,x) = 0Vx € Fg4i41 D Fy4i- Thusz = y € K, +i, and then

Ka,_+i+] < Kak+i- O
Let us suppose that, for i = 1,...,d; — 1, we have dim K, 4541 = dim K, 4+; + 1,in
other words, that Ky +1 € K42 € - - - & Kyy+a,, and suppose besides that dj is the first

index i for which the kernel K, +i is not increasing.

Then we must have either Kz, +q,+1 = Kz +a, OF Kgy+a,+1 C Kg+q,- We know that
we may write Fgivi = Fp, & Kg4; for i = 1 until di, and we will denote by e;;; =
mrka-i(clatdy where rrXeeti; Fa,+i — Kg,+;is the natural projection for that direct sum.

Let us notice that ei;; ¢ Kj,+i-1, Since otherwise, we would have clatd) g E, ®
Ka+i-1 = Fa+i-1, which contradicts the hypothesis on the flag (Fj).

LEMMA 2.2 The family {ey,, ..., €x;q,} is a basis of Ky, +a, -

dy
Proof. This family is free. Indeed, if }_ A;ex; = 0 with coefficients A; not all nil, let
=
! m-1
m the greatest index i such that A, = 0. We then have Ap,ep;m = — D Ajexi € Koy +m-1,
i=1
SO et € Kay+m-1, Which is impossible. Thus, the family {ex., ..., exq,} forms a basis

of Kg, +a, (sinceitis clear that dim Kg,+4, = dy). O

LEMMA 2.3 We have (c!%*9*Y) gy =0, Vi=1,...,d;.

aj 3
Proof. Let us write c'%*4«) under the form ¢(%*9) = ¢;.; +3~ o;c!?). Then we have

=1
ag ) a .

clatdi+l) = e;.-dk + 2 o‘:.c(:) + 2 O(,'C(”'”. Thus, (c(ak+dk+l), ek;i) = (e:k*dk' ei:). Now,
i=1 i=] ’

(€ha, € + (€hdys €)= (€hay, €)= 0. So (D) gy = —(erq,,€,). But

=0

. aj .
€,.; € Fa +i+1: indeed, we may write ¢!%*) = g;.; + 3" B)c!!, and then €); = clatil)
=1

a a;
{1l
> Bt =3 e € Eyvin.
I=1 1=1

We deduce that (c'@*4*)) ¢, =0Vi=1,...,d) — 1. On the other hand, we have
(€kq, exd,) = 0,50 (e'k,dk’ ei;q,) = 0. Itresults that (clartdtl) €kq,) = 0. O

Using this lemma together with Lemmma 2.1, we get
CoroLLARY 2.4 Wehave K, +4,+1 = Kgptd,-

Then we may complete our family {ex, .. ., €xgq, } into a basis of F,, 4+4,+1, adding a
Vector e;4,+) defined in the following way: the quotient space F;, +4,+1/Ka, +4, is not de-
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generate (we quotient the spaceF,, +4,+1 by its kernel),and contains F;,+4, / Ka, +4,, Which
is also non-degenerate. S

»

Thus, the orthogonal space of F;, +4, / K, +4, inside Fa +4,+1/ Ka,+4, is a supplemen-
tary subspace of dimension 1, and we get the orthogonal decomposition

Fa‘+dk+l /Kak+dk = Fak+dk/Kak+dk ® (Ezk+dk/Kak+dk)l .

This supplementary subspace gives us a vector eiq4,+; (unique modulo the kernel
Ka,+a,), that we may choose unitary (i.e. {exa,+1,€rd,+1) = =1, and we denote it by
€X), and such that the family {ey), ..., 4,41} is a basis of Fpsd,41-

Remarks.

1. The vector e;4,+1 is not isotropic, otherwise it should belong to the kernel
Ka,+a,+1, and we would then have dim Ky, +4,+1 = dim K, +4, + 1, which is not
the case.

2. The quotient space F,, .,/ F,, is of type (di, di. + 1) or (di + 1, di). Thus, ¥ is the
signature of this quotient space.

3. In order to fix the ideas, we may consider the vector ej;4,+) as the unitary projec-
tion of the vector c!®*4*D onto the quotient space (Fy +a,+1/ Kaged, )

Lemma 2.3 may be generalized in the following:

LEMMA 2.5 We have

(clardrm) o Y =0,V1 < m< d, Vi=1,...,di+1-m.

Proof. Lemma 2.3 tells us that the result is true for m = 1. Suppose the lemma
trueuptom —1,2 < m < d;. Remark that, since e;m. € F+i+1, We may decompose

ag i+l
e ;=S e + Y viggwithap +2 < ap+ i+ 1< ap+ di +2 - m < ag + dj.
=1 I=1 .
But forany ! < ay, (e}, ¢y + (e, ¢y = (eri, ¢!V) = 0,and so,

=0

] i
(€D = —(ei, MV ) =0

€Rnsh;

Thus, the vector e;; is orthogonal to the space F,,, and therefore, since the space F;, is
i+]

non degenerate, wehaveA; = 0, V1 < I < a;. We obtain e’k;i = E vier1, and we imme-
=1

diately deduce, according to our induction hypothesis, that (c{®*+dtm=-1) ¢ 3 = 0.
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It follows, according to the equality

-

(C(ak+dk+m),ek;i) + (C(“k+dk+m'l) )_ (C(ak+dk+m 1) ° ekl) ,

g

=0 =0 by hypolhesls

that (clatditm) o 1y = 0. D

LEMMA 2.6 V1 < i < dj. - 1, there is a function C; such that eL = eri+1 + Cieyy.
di

Moreover, there are some functions €, . . -» €d,, O such that ek d = Orekd+1 t Z €re,.
=1

Proof. We have seen, in the proof of Lemma 2.5, that rrF"k(e'L_,,.) =0,1< i< d,

where 1t/ is the projection F; +i+) — Fa,.
. ax .
Let us then write c!%*) = g; + 3 ¢{”c'. We obtain, for1 < i < di ~ 1, ¢}; =
=1 .

. 2y () a ) .

claritl) _ 57 et - S D) = gy — ¢y + T, where T € .
1=1 i=]

Thus, since 7/ (€} ;) = 0, €}.; = exis1 — @) ei1. Thus we obtain the result with

G = _¢(l)

For i = dj, the result is clear since v/ ( e;_ s ) = 0. More precisely, we may write
dy
clatditl) = 5,015 01+ Y Orey + Z @D, Then the equality
=1 I=]

€fg, = ClUTATD Z Pl ¢t 121 &%) D) implies, as above, that
’ dx d;)
€q, = Okeka+1+ ) Brex — Put ey O

=1

LEMMA 2.7 V1 < m < di + 1, wehave (c'%* %™ gy 15 m) + 0.

ax
Proof. The result is true for m=1: indeed, we may write c'%*%+) = 3~ @tV +
=1
i
3 Biek1 + Sxekaur, and then, if (¥ %+ g4 1) = 0, we must have §; = 0, so that
=1
cla*d*l) ¢ F 4., acontradiction.

Suppose the result true for an integer m < dj, i.e. (c!%*2+m), eid+2-m) * 0.
We have

(C(dk+dk+m+]) (ap+di+m) (ap+dy+m)

! 1
’ ek;dk+l-m) + (C y ek;qur]_m) = (C » ek‘,dﬁ'l-m) .

=0 according to lemma 2.5
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In other words, if m > 2 we have

(ak+dk+m+l)

(C _ (c(ak+dk+m)

’
» ek;dk+l—m) ’ ek;dk-l-l—m)

(ap+di+m)

= _(C 2 elc;dk+2—m + Cdk+l-mek;1)

Now, according to Lemma 2.6 and the induction hypothesis, this is equal to — (¢(2x*d+m)
ei.d;+2-m), Which is not null.

1If m = 1, we obtain

(a,,+dk+2) (C( ak+dk+l) !

(C rek;dk) = )ek-'dk)
dy
di+
= —(cla*dx ”:lskek;dkﬂ + E €rex;1)
=1
+dp+
= _(c(ﬂk % ”nakek;dk+l)

+ 0.

Remark that Lemmas 2.5 and 2.7 imply that

Kak+dk+m = Kak+dk+l—m: Vi S m s dk .

To end this section, let us prove the following lemma relating the signs €* and ;.

LEMMA 2.8 The sign €* of (exa,+1, €xa,+1) is related to the sign €y of the quotient
8a,_,(8a,) ! by the formulae® = (~1)%e,.

Proof.
Let us denote by B[kim] the basis of F,, defined by the recurrence
oBlin = plintl | (g, e,{‘,’, oo @B MYifag, » ap+1,ie ifby = 1

'B£T;] BL‘“'] U {TrF"k (C(ak+l))}lfak+] =a;+1,ie ifb; =
We denote by g["“] the Gram’s determinant of the basis BE"‘]. Then, an easy com-
putation shows that

d
(et etV = (1) grlgly ) (*)

From Lemma 2.6, we may deduce that e,(d") = 8)epq4,+1 + K, for some function x on

(de) _(dy)
Kg,+a,. 50 that (e, ", g, ') = 8%.(ekd,+1» €xa,+1). Consequently,

k
€ = sgn(eid,+1, Cicd,+1)

d
= sgn(e,(c_l"),ek_")) (xx)

= (~ l)dksgn(gynt](g[mt]) l)
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where the last equality results from equation ().

Now, since the matrix P*) of change of basis from the basis {c¢'";..., c!®} of F,, to
the basis B[k""] is an upper triangular matrix with coefficient 1 everywhere on the main

diagonal, and since we clearly have (P'®)! Gram{cV,...,c®}pH = Gram{BE"‘]},

we deduce that [det(P'M) g, = g™, ie g,, = gli™*].

Thus, the equation (* x) gives us the result. O

3. The geometrical fundations of the construction

3.1. First step: when the kernel grows

. . . : 1ap+2dp+l _
Since the space Fy,+24,+1 is not degenerate, we have dim Fg, 424, +dim F, 5, ™" =

. _ s . Lap+2d+l _
dim F; +24,+1 = @i + 2dj + 1;in other words, dim F, 134, =1.

tap+2d;+1 . . .
Thus, the space ak:’;dk s generated by a vector ny.;, necessarily null since
Fa, +24, is degenerate. Moreover, let us remark that ny;; € F;,+). Indeed, recall that if
we write e = nK“k“(c‘“;“)), we have ex;) € Kge1 C Kapez € -+ C Kgpua, =
+2d;+
F;‘i’;ki]" !, and on the other hand, the Lemma 2.5 ensures us that
Lap+2d+]

(clanrdatm) g 1) =0V1 € m < dy,sothat ey, € F %

Ko +a,+1, 80 €f;) €

Since the space Faii;';fd"“ has dimension 1, there exists a smooth function Ay ()

satisfying nj.1 = A(x)ex,1, which naturallyimplies ny;) € F,+1.

Remark now that the equalities

o dim Fg, 424, -y +dim ﬂiiﬁ;ﬁ",ﬂ =dim F; +24,+1
ap+2d; -1 ax+2d;+1
. : lap+2d; . : .
o dim Fapuza, 1 +dimF, 5,75 = film Ez;‘+2dk‘+ dim Fay 424, -1 N Kay+24, imply
ap+2d,-1 ak*"zdk =Kg; +2d; CYKﬂk-O-de— 1
thatdim Faii’;,i‘f"]” =2 =dim Fat:;;f‘f‘; Thus we deduce that F, :;;if’; = F;t:;'z‘f’;” =

Koy +24,-1-
Therefore, we may choose a vector ng;; such that Ky, 424, -1 = (ni;1) @ (ni2).
Let us remark that ";.—,1 is a priori the most natural candidate, since V1 € m <
ay +2dy = 1, {ny, ¢™) + (nygy, ™) = ((n, ™))
\ ~ AR ~ ,
The above construction may be pursued in the same way for the spaces F; +24;,-m

(for any integer m from 1 to d;), and leads us to introduce some Vectors ny.s, ... ., Rigd,+1
which are nothing but the successive derivatives of ny;.

Remark nevertheless that for m < dj — 1, the previous computations show that

. lagt2dp+l _ . lag+2dp—-m+l _ . — s
dmF, g -m =dimF, oo = 1+ dim Ky, 42d,-m+1 = dim Ky 424, - m, SO that
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sayt+2d;+] . . .
ak:;. dk_’;n = Kz, +2d,-m, Which forces the introduced vectors ny, ..., ni.q, , belonging
to a kernel, to be isotropic.
+2d;+1
On the contrary, for m = di, we have K3 +4,+1 = Kgy+4,, S0 dim F, ‘t:"‘,k o=
sap+dy+) _ : .
dim F, ag+d =1+dim Ky +4,+1 > dim Ky 449, .

Thus the space F*""“d"+1 contains strictly the kernel K,,+4,, and the introduced

VecClor niq,+1 (Which we w1ll denote by 771 in the next sections), generating a supple-

n ak+de+l

mentary space of Ky, +4, in F,, » is not isotropic.

Moreover, it is important to note that, since ni; € F;,+), we have ny; ni‘] N e

Fp+iforl i<dr+1, SO that ny;; € Ky +ifori < dy. Inparticular, for i < di, itis
clear that {ny,..., ng;} is a basis of Ka,+i, and thus

Kak"’i = (nk,] reoos nL",i) = Kak+2dk—i+l

Finally, let us remark that, by construction, it is clear that we have

Lak+2dk m+] _ .Lﬂk+2dk+’ - J.al+2dk+l
© Kay+2dy-m = F,‘drzd,r m = P;z,,+2dk—m = La+2d;-m+1 &(ngm+1) for m< dy,
=Rap+2dp-m+]
and
rap+di+l _ plap¥2dp+l 1ap+2dp+1
F;zk‘i-dk = ay+d; = ap+di+1 $<nk;dk+l)'
[ S——

=Rap+dp+1=Rap+d;

Before beginning the second step, we may wonder what choice of vector n;.; seems
the mostjudicious, in other words, knowing that one may write ny; = A ek for some
function Az, (r), the problem is to find some function A(x) which makes the choice of
the vector ny.; the most natural one.

In view of what we have just seen above, the only function A which seems to
impose itself is the function which would allow to normalize the non isotropic vector

ni.q4,+1, i.e. the unique positive function such that we have (n(d"), % ")) k. where
eb = #1is the sign of (exd+1, exd,+1). Since n(L_") = Aw ek_") + » for some vector
> in the kernel K +4,, it is clear that (n:f’l"’, nz_d,"’) = A k)(e(d"),eid,")) Now, recall
(dk) (dk)>2dk+l = (—l)d*gab, (ga,,)"
Thus. we deduce that the function Ax) which we are looking for must satisfy Afgd"'”)
(-1 %er gy, (8a,.,) 7" = €x8ay(8ap.,) "

In other words, we are led to the following

that we have seen in the previous section that (e

Formula3.1: g, (g,,.,) "' = (A%, €x) 2!

If besides, we impose A(x) > 0, by analogy with the Frenet's frame in Rieman-
nian Geometry (where this last condition determines in some sorts the orientation of
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the frame), the function Ay, is then defined in a unique way by the previous formula.

3.2. Second step: when the kernel decreases

J.ak+dk

It is important to note that F, ;5 "} = Ka+a, C F‘“’“J'Zd"+l

gty -1 Indeed, we have

iap+2di+1 . .
dim F, k:‘dk = dj + 2. Ourfirst aim is to find a priori a vector u;;4, such that

lap+2di+1 _ piap+2di+]
Fﬂk"’dk—] = F;k+dk e(uk;dk)'
(S —
= Ik+dk

Then we must choose some vector u;.q,, orthogonal to the space Fy +4,-1, but not be-
longing to the space F*:’;:Zd“” (ie. such that (uia,, Ni4,) * 0); moreover, it seems

natural. it possible, to want to choose uy,q4, isotropic.

For those reasons, the previous strategy, which would have consisted to take for vec-

tor uyq, the vector n(d" Y| does not seem to be the most judicious anymore, since now,

the kernel K;, +4,-1 does not coincide with the space F, li’:;z_‘i"” anymore. In particular,

we lose the argument which, in the first step, ensured us that the introduced vectors ny;
were indeed isotropic.

This may be expressed by the fact that the hyperbolic plane generated by the vectors
¢ "”) is furnished with a metric of the form

0 —€Ff
-e¥  x

for some function k € €% (I, R) (takinginto account the fact that

ni.q, and n;_

(d, +l) (d 1 (di+]) (dp-1) _ (dy) (dy) _ (dy) k
(Micay, My ) =gy el ) = (meyf :nklk) =y ng) = —€").
t—_v—_a
=0
Then, it seems more judicious to account for the “obstruction of the vector n(d" Y to be
isotropic” by defining the vector uj4, so that we have nﬁfl" D= = Uj.d, + Yi,d, Nk.d,, Where

. . k -
Y} 4, is the function —%K = (—l)d'f I%K.

The hyperbolic plane %4, generated by the vectors nj.q, and u,.q, is then fur-
nished with the metric 0 -€F
(e )
For the same reasons, we may hope to end naturally the whole process by introduc-
ingfor 2 < i < dj some Vectors uj;q,+1-i, Such that

;ak+2dk+l — iap+2dp+1 .

© Fk+dk i = Fak+dk—|'+l & (Ud+1-i)
[
2Kg+dp-in1

O (Ukdp+r1-ir Nisdpr1-i) = (—1)7ek
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<o (uk,dk'f'l—i; nk;dk+m-i) = 01 V2 < m < i

O (Ukd+1-is Ukdp+1-j) =0, VI j<i

I/
O Upg +1-i = Ukd+2-i t Yk dpr2-iNkgdi+3—i + Yhdp+1-iNkdy+1-i-
Remarks.
« We have dim X, oy =dp—i+2 < dp+i-1=dimE*“%?% and thus
ak+dk—x+2 - k= k 1 = m ak+dk—i+2 '

. c ~ay+2d+1
Kaprdy-iv2 & ag+d;-i+2

e Wehave upg,+1-i € Fap+a,+in1 V1 < i < d;.
We thus have obtained a decomposition of the space F,,,, = Fa,+24,+1 in the sum

Fak,l = Fak e (nk,dk*‘l) e%,l 6 st $%,dk'

each of the hyperbolic planes &3 ; = (nyi, ¥x;;) being furnished with a metric in the form

0 (-1) e
(-1) ey 0

4. The construction of our basis

Let us suppose that we have already built a basis ;. of F,,, satisfying the conditions
given by the Theorem 1.3 (with k possibly 0 and the conventions a; = 0, i = {0}, 8 = 1,
and Zp = Q).

We want to build &+ on Fy, ;.

4.1. The casewhere k < kpax

In this case, there exists an integer ax+;; Then we will complete the basis of F;, into
abasisof Fy, ,,.
First, if ax4; = ax + 1, ie. if F;+) is not degenerate, then the orthogonal space
4
Fa*k“"ﬂ has dimension 1,and F,4) = F;, ® Fai“"”.

Then we may complete the family 3;. with some unitary vector generating the space
F,,i_a"“ , and we define A (;)(t) > 0 to be the function such that the vector

La;+l
e = A(k)TtF”k (C(“"+1))

has norm €. Note that we clearly have A%, €x = g,, (ga,,,) "
Now, if a;+) # a) + 1, we must make a more subtle analysis.

Let ny) = A(x)ex, avector generating the kernel Kj, +1, A(x) being the smooth func-
tion defined by

(A%k)ek)uk” = g“k(gakn)—]
Airy > 0.
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Let ny; = ngl‘” the (i — 1)-th derivative of ny; for2 < i < di, and put . := nf{‘).

Recall that the function A ;) has been chosen in order to have

(T, ) = (~1)%eg = £1.
ProrosiTiON 4.1 The family B, U {ny,, ..., Nia,, Tk} is a basis of the space Fy 44, +)

Proof. Since Z, is a basis of F,, which is non-degenerate, and since the vectors
{ny),..., nia,, ) are all orthogonal to F,, it is clear that it is sufficient to prove that
the family {ny,, ..., niaq,, i} is free.

dy dy 2
Suppose thatZ o;ng;+ Bt = 0. Then the equality l Z o:,-nk-,,--l-ﬂm‘l = O0implies
i=1 i=1
that 8 = 0.
Now, suppose that the coefficients e, ..., &g, are not all null. Denoting by p the
p p-1
greatest index i such that &; = 0, wehave Z a;ng; = 0, and thus ng,, = —-;’; Z ANy €
i=] i=1
Ka,+p 1, Which is absurd, since ny, may be written ny;, = Tnekp + Ep, With €, €
Kal+p-ly and eip ¢ Kak-&p—]-
Therefore, wehave &) = - - - = &g, = 0. O

It remains to complete this family into a basis of F,, _, .

ProPosSITION 4.2 For each integer i from 1 to dy., there exists a vector u;.;, uniquely
defined modulo the kernel K, +i-1, satisfying the following conditions:

(1) uy; is orthogonal to the space F,,
@) (upi,npj) =0Vl j<d, j#i
(3) (ki i) = (1)1 ey

(4) {upi, 1) =0

(5) (ul\“,ir ulc,j) =0Vig J < di

Proof. Let us write

dy dy
— +2dy+2-i
Up; = vclar2dt2z=h 4 E Nk,jNij + ExTlic + z Hi, jUk j
j=1 j=i+l
k-1 4 d;
+ E (E nijnj+ &m + E m.juz;j)»
1=0  j=1 j=1

We choose below the coefficients ny,j, €1, 1y, j so that uy; satisfies the conditions
(1),..., (5) in the proposition.
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VoL IKk-1L,V1K j<4d
o (upsi, g j) = viclB¥2a32=D gy 4 (~1) ey, = 0.

So we choose py, ; = (1) €yv(cl4*2de¥2-D p). o),

o (up, 1) = vi(c!*2a32=0 gy 4 (~1)%e = 0.

So we choose & = (=1)%417 e v;(clk+2di+2-1) g7y

o (upi, ug; ) = vicl@t2ded2-0 g,y 4+ (—1)7 eny ;= 0.

So we choose 0y, ; = (—1)Jeyv(c!a+2det2=D ;. 0y,

o V1< j<i=1, (Ui nigj) = vi{cl%*2¥2-0 0y = 0 according to Lemma 2.5
o Vi+ 1< j< diei (Ui i j) = vicl@¥2a¥2-0 oy 4 (=1) 7 Vegy j = 0.

So we choose py, j = (—=1)dexvi(ca+2dt2= py. 0y,

(Ui, i) = vi( 20320 pyy = (~1)7 ey

(—l)i_‘f

So we choose v; = (AT

Recall that (c!*24k+2-1) p, ) + 0 according to Lemma 2.7.

(Ui, ) = vi(c'O*2a%270 ) 4 (—1)% e Ex = 0.

So we choose §; = (=1)% Te v (c'a%* 24420 g,y

e Vi+1< j< di, (upi uk;j) = V,'(c(""‘*de‘*z‘i), uk;j) + (—l)j_l€knk.j = 0.

So we choose n, j = (=1)Jegv; (' 220y, 0y

d dy
+2d;+2-i
o (Wi, i) = (g, vic @P2A 20 4 Z Nk, jNkj + Exmle + Z Hk, jui j
j=1 j=itl
k-1 (& 4
+ E E nl,j"l;j+§11TI+Zm,juz;j )
=0 \ j=1 j=1

vi{u;, C(a"+2d"+2_i)) + (—l)i_lfkrlk,i

dy dy
+2d;+2-1i
viviclat2at2=i 4 E Nk jMk,j + ExTk + Z Hk, jU; j
j:] j=i+1
k-1 [ 4

d
+2dp+2-i
M Z Z mjnnj+ &+ Z”I'ful;j , clert2dirz=)
1=0 j=1 j=]

+ (=) lern:
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dy

— 2 dy+2-i),2 i di—

= ViIc a2t 2D 2 4 N ey g + (D kR
j=i+1

d;.
+ Z(—l)jfkuk,jnk,j

j=i+l
k-1 [ 4 d;
+ Z Z(—l)jelnl,jﬂl,j + (-1 e 8 + Z(—l)jﬂm,juz.j
=0 \ j=1 J=1
+2(~1)"ernp;
=0
Notice that the last equation defines the coefficient n; ;. O

Thus we have succeeded in completing our initial basis Z;. of F,, into a basis ;. U
Nis ooy Nicay, T, Uksay, - - -5 Uk} Of By, Where the vectors u;; are defined modulo
the kernel K, +;_1, and the metric has the following matrix in that basis:

(-1)%eqUy 0 0 o ... 0 ee ... O
0 (-NaeqU, ... (]
0 0 (-D%ae Ui, 0 ... 0 ee ... O
0 ()} o ... ()} vee 0 €

—€x V]

0 ] 0 0 ()}
0 0 (=1)%ex 0
0 0 —-€x 0 . .
0 0 €& 0 o ... o0

In other words, we have obtained a matrix

(~1)%eq Uy
(-1)%¢, Up

4.2. Thecasewhere k = kpay

Recall that we have denoted by r the unique integer such that F,_; § F = F4;.
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If r = ay,_,., then the construction is finished at level knyax: we have the basis &, of
F, satisfying the conditions of Theorem 1.3.

If r > ay,,,., then for any integer i between ay,,, + 1 and r, the space F; must be
degenerate.

Furthermore, we have the following result:
LeMma43 Ifar=a;,, <1, thenKy+1 S Kgys2 & -+ £ K;

Proof. Suppose the result false. Then, with our previous notation for dy, this means
thatr 2> a; +d; + 1.

Then we may complete the basis % of F; into a basis of F;, adding vectors
{niy,.. . Niedy, Tk, Uksdys - - - Uksag+2d, - r+2 }, iN the same way that we have done in the
previous section. It is clear that we must have (c{%*9*1) ;) = 0, otherwise, we should
have ¢'@*4*) e E_ ., . and consequently, Fp+q, = Fi+q,+1, Which would imply
r<ap+d.

Remark that the proof of Lemma 2.7 is still true as long as one may start the induc-
tion. We thus conclude that (c(@*4+m) p,.; o ) = 0foranyintegermwith2 < m <
dy +1. In particular, we have {¢'™"V, ni.4,424, - r+1) = 0. But, since ¢!V € F.; = F, we
have (c¢'"*V, Mig,424,-r+1) = 0. (Remark that ax + 2d; + 1 > r, otherwise there would
exist an integer a;4, defined by a4 = a; + 2d;. + 1, which would give a contradiction

with the fact that k = kpax). 0
Thus we obtain a basis of F adding to the family & some vectors
Migls- -0 Nigr-ay _» Where ny; € Kap4i — Kaypi-a-

In this basis, the metricis

(-1)%eoUy

(=1)%maxley  Up -1
(0]

r—akmax

In conclusion, we may say that the process described in this paper must then come
to an end either with a non-degenerate final space F;, or with a degenerate space F;, in
which case, the residual kernel is constituted with vectors of type " ny__.; ".

5. The matrix of derivatives

5.1. The case where k < kpax

In this section, we are going to choose explicitly the vectors u.;, which were previ-
ously defined only modulo the kernel K;,+;-1. We choose them so that the basis % U
{nc, ... Nisay, Mk Uksay» - - - » Uk;1 )} satisfies the conditions (3) given in Theorem 1.3.



A generalization of Frenet's frame ... 119

« By construction, it is clear that we have n’k;i = ny;;+) for any integer i from 1 to d;.

* Since ;. € F;,44,+2, We may write

k-1 (4
= (0 0 0 0 0) 0
= ot oS oS (3 o+ 60 + 3.
j=1 =0 \j=1 Jj=1

o VOKIK<k-1,VIK j<d,

4 ’ — (1T, Ny 1) j < d;
(T nyj) = — (M, n1;j) = k JTI _fj =0.
Then we deduce that a(°) = 0 for any integer j from 1 to d;.

o VOIS k-1,
(n;;r Trl) = —(TTL‘) "1,) = —<Trk' ul;dl + Yl,dl nl;dl) =0

Thus, we have BIO) = 0.

o VoI k-1,V1LK j<Kd,
(Tr;(r ul;j) = —<Trk) u;;j) =0

since uy.; € Fysz2di+3-j S Fapszape2 S Foy 424, +2 = Fa1. SO, we have
0) _ .
Y =0v1< j<d.

O (M nka,) = —(Tk, Ny ) = ~(Tk, i) = (-1)% gy,
Thus, ai?;k =1.
o (M) = 3(m, ) = 0.
e )
=(—])dk6k
Thus, B0 = 0.

di
()}
Therefore, T} = upq, + 21 yi }nk,
J=
Recall that the vector u;.4, is defined modulo the kernel Ky, +4,-1; this leads
us to substitute to the vector uyq, the vector v;;4, defined by vgq, = ujq, +
di-1
Z y‘f} ni, j, and then, denoting by Yy, 4, = yk d , we obtain:
]

!
T = Ukd, + Ykd, Nid,-

* Ujg4, being defined in this way, let us compute U'L.,dk.
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For this, let us write

dy
Uka, = Okdp_ Ukdy_y + Ok di Uk, + BiTTi + E Yk, jPk j
Jj=1
k-1 d, d;
+ E E o, juj+ By + E Yi,in;j
1=0 \ j=1 j=1
o VOKIKk-1,V1I< j<d,
4 ’
(Uk.dk' nl;j) = -(Uk;dk' ng; y=0.
(S

€FaysjisFay_1vdp g1

Thus, 0;,;=0V0< I < k-1,V1 < j<d.
O (Uhg, T = —(Uka,, L )=0.
——
€ n,+d,+25Fak_1+dk_]*2

Thus, 8; = 0.
o VoL IKk-1,V1 j<gd,

(Vkeay Ut j) = = (Ugea, uj, )y =0.
EI:"'+2d’+3'igE‘k-l‘24k—1+2
Thus,y;.j=0V0<I<k-1,V1K j<d.

O (Vg Nkd) = = (Vkay, Mg ) = = (Ui, k) = 0.
Thus, atgq, = 0.

O (Vg Nhdi-1) = =(Ukidy Mg, 1) = —(Ukay, Rica, ) = (-1)%e¢;.
Thus, otgq, , = 1.

/ - - - d
O (Ukg,r k) = ~(Vka,, M) = ~(Ukdy, Uk + Yidy Nisdy) = (=1)%€xYkd, -
Thus, Bk = Yi.4,-

| —_
O (Ujg, Ukid) = 5(Vkidy Ukia,)’ = 0.
[ A

=0
Thus, yia, = 0.
dp-1
. . ’

From all these computations, itresultsthatv;.; = uka, ,+Yrd, T+ Zl Yk, jRis j-
j=

Reminding that the vector ujg4,_, is defined modulo the kernel Ky, +4, -2, We are
d;-2

led to substitute to the vector ujq,_, the vector vjg, | = Upgq, , + 21 Yk j Bk j»
J=

and then, putting Yy 4,-1 = Yk,4,-1, We obtain:

’
uk;dk = Uk;dk_l + Yk,dkrrk + Yk.dk-l Nid,-1-
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¢ Now, suppose that, for i = d;. — 2,...,1, we have made a particular choice, for any
h-1
i+1 < h < dg, of vector uy;, + Z Yk, jni; j, that we will denote by vy, satisfying
j=1
the following equation

Ukh = Ukh-1 + YihMicher + Yino1 Pich-1, VIS h S

Let us then write

di dy
!
Ugisl = O ilpsi + E O, jUkj+ Bk + S Yk, jNk;j
j=itl j=1
k-1 d; d;
+ E E o, jurj+ Bimy + E Y1, in;;
=0 \ j=1 j=1

o exactly the same computations as above show easily that all coefficients
;. j, Bi, ¥1,j equal to 0, for any integer | from 0 to k-1, and any integer j from
ltod;.

o Vi+l< j<d,

’ ’
(Ukis1 i j) = = (Upit1, Ny j) = 0.
Thus, ay, j = 0.
O (Uljey Misi) = —(Ukir1s M) = —(Upsie1, Niie1) = (1) ey
Thus, we deduce that az; = 1.
O (Ulisy k) = =(Ukin1, 1) = 0.
Thus, B;. = 0.

o Vi+2< j< dy,

’ !
(Ugyis1r Vi j) = —(Uki1, U )

—{Ukis1, Vg j-1 + Y, j R ja1 + Yk, jo1 Pk j-1)
j+1
j-1

Oexceptfori+1= {

So,wehavey;,j=0Vi+3 < j < 4.
O (Ul ipy Ukiis2) = =(Uki+1s Uksitl + Y is2 Nigises + Yi,is1 Rigis1)
= (-1 exYpin
Thus, Yi,i+2 = Yiit1-
O (Uis1r Uksi+1) = 3{Ukiny, Uin))” = 0.

=0
Thus, yri+1 = 0.
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1
Therefore, we may write Uy ;) = Ui + Yi,is1 Biziv2 + 21 Yk, jNk; j-
j= <
But, the vector uy;; being defined modulo the kernel K, +;-1, we may substitute to
i-1
this vector the vector Ui == up.; + Z Yk, j N j, SO that, denoting by Yy, ; = Yi.i, We
j=1
obtain:

’
Uksie) = Ukgi ¥ Yiiv1 Nigiv2 + YiiNigie

» Finally, it remains us to compute the derivative v} ,. According to whether the
space F,,_,+) is degenerate or not, we are going to introduce a new vector x, which

will generate the kernel (in the degenerate case), or the orthogonal space I-}‘,L‘ff”ﬂ
(in the non-degenerate case).

More precisely, we choose the vector x to be

o the null vector if r = az4;

o the unitary projection of the vector ¢(%-1*1) on the space E;***! if F,

Qj+1 kt]
is not degenerate, i.e. if aj42 = a4+ + 1

o Ax+1)€k+1;1, if Fa,_ 41 is degenerate, where ex+1;) is the projection of the vec-
tor ¢!®1*1) onto the kernel K, ,+1, and A (k+1) is the function defined by

2 2d, 1 -1
{(A(kn)e“l) ket = &a;., (8ay.,)
Atk+1) > 0

if Kk +1 = kmax, or some function which we will define in the next section if
k+1= kpa.

k (4 d
Let us then write v}, = X + g (Ex oy jurj+ Bim + Zx y,,,-n;;j) .

© Thesame computations as we have made above show that all coefficients are
equal to 0, except sy, Yi2, and yi—1 ;.

O (Ui Uk2) = = (U1, Ukt + Yie2 iz + Y1 ict) = —€x Y1
Thus, Y2 = Yg1.

O (Ul Uk-1:1) = —{Uky, 2017051 + Y11 k-2 + KMpo2,1) = —€x -1
for some function k on R.

Thus, Yx-1,1 = —€k-1€kk-3-

Therefore, we obtain v’m = 3. X + Yi1 Nic2 — €x—1€kk—1 NEc—1;1-
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Relatively to the basis Bi+1 = Br U {ny, .., Nicays Tk Ukedyo - - -» Uk }, the matrix of
derivatives looks like

Ao .LC() enn s 0 e oo e .o cee oo e e e 0
Lcy Ay Lg 0 “es “ee e cee cen ves “ee pee cee 0
o g o ... 0 Y |
0 . .. PR
0 e LC‘_._Z Ak—l Lck—l 0 “ee e 0
0 “ee N ces LCk-l 0 1 0 0
0 0 )| 0

0 0 Yi.d, 0 1 0
0 0 Yi.d-1 0 Yea, O 1 0 0

0 0 Yk.d,—z 0 Yk.d,‘—l 0 0 0 1 0

Y] 0 / 0 / 0 1 0
0 Yi, ()} Yez O 1 o0
0 0 Yk.] 0 0 ﬂ

where the last column represents the coefficients of the vector x € F;, ,,+1 — Fa,,-

In other words, we have obtained a matrix in the form

(Do Lo O ... ... ... OW
Lo A Lg
0 ILg :
: . . : . 0
\ 0o ... 0 Lcgy Ar Loy

5.2. The case where k = kmax

If r = a;,,, there is nothing more to do. If a;,,, < r, exactly in the same way as we
have done above, we put nx_...1 = Ak €kmax1» and for any integer ifrom2tor — ax_.,
= pli=1)
nl‘mm;i - nkmaxil'
Here, the only problem lies in the choice of the function A(y,_,), noting that the
previous formula does not apply anymore, since now, there does not exist a non-zero

»

«“
gakmax"l .

In fact, the most natural choice of A(x,_.,) is given by the following proposition.
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PROPOSITION 5.1 There exists a unique choice of function A(y,_.,) such that

n’km&;r_akmax [ Kr—]
A(kn'xax)(o) =1

Procf. An easy computation shows that

’
kmaxiT— Gy

= (A (k) it )|~ “mae)

(r-ap..—1)

_ (r=aimay) ’
= A(kmax)ekmax;l + (r - akmax)A(kmax)ekm;l
T—ﬂkmax
i (i) (r—agg, .~
+ z € ~@kmax kmaxekmaxﬂ °
=2
57('7—1
M . (r-agp,,) - R L STaoN f
oreover, since ¢; . € K,;; = K,, we may write it as Z: vie; ., for some
=

functions v;, so that n’kmx € Kot <= Alian) Vr-ay, + (T — akma)A;k’m) =0.

T Bema
Therefore, A(y,,.,) is the unique solution of the above differential equation with ini-
tial condition A(x,,1(0) = 1. O

From this, it results that for the curves for which the final space F, is degenerate, we
may introduce a third kind of functions ¢;, such that the matrix of derivatives admits a
decomposition

Ao Leg O o}

L‘\CJ() A LC]
0 Lg

0 0 LCkmax_z Akm_] LCkmax_] 0 .e- 0

o ... ... 0 0 1 0 0

0

: : 0 0 1

0 cee P 0 (9] cee ees g,_l-akm OJ
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i.e. the matrix

A Leg 0 ... ... cee 0\
Eo Ay Lqg :
0 Lg
A=
0
IE_/I Ay Lep

with h = kpa — 1.

6. The change of basis

Notice that one may get our new basis {v,, ..., v,} of F, from the canonical basis
{cM,...,c'"} by an upper triangular matrix, the main diagonal of which is

(A1 -+ A0 A)s -+ 1Al o5 Alhiman) s -+ » Alhima))

v

v

by b T8k ax

Besides, we have the following result relating the functions A(; and »«;:

. Vogi -1lifr =+ a
PROPOSITION 6.1 7¢; = bl = Krmax ! tmax
0 <

N
i< kmax_Zifr=akm
Proof.
» Firstcase: if @;4+) = a; + 1.

In this case, X = nj+1;1 = Ai+1)€i+1;1. We have U:‘;l = A+ €iv1n + Yid;ni2 —
€i-1€i%i-1 Ni—y. But 41 = g1 + y, where y € Fy,,. So, v}, = A4y c@nt) + 2
(1), for some vector z € F,,,,. Furthermore, we know, looking at the change of basis
above, that we may write vz = A;)c'%+V + v, with v € F,,_y. Thus, v}, = A¢ycl%+*) +
w(2), with w € Fy,,,.

Equations (1) and (2) together with the fact that ¢!V, ..., c¢/+1*1) are independent
give us the result.

» Second case: if a;4+; = a; + 1.
The above arguments are still valid; we just have to write now

lajpp+

1
X = My = A(iﬂ)Tl’F“iﬂ (c(“in"’l))'
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Using Formula 3.1, we may deduce

1 P 1 1
Formula6.1: 52 = |g, | |g, |31 T |g, 1T

7. Parametrization of curves

The study that we have led in this paper allows us to give a natural parametrization
to each pseudo-regular curve c in the following way:

ProposiTION 7.1 Givenanyty inl,

1 IflIc'™"|2 = 0, ie ifa; = 1, there exists a unique parametrization y = ¢ o @ such
that

(Y(l),},(l)) =+1
@(0) =1
@' >0
2. Ifkmax = Oanda; = 1 (i.e. |Ic'V||? = 0),there exists a unique parametrization
Y = ¢ o @ such that

Iga]I = 1
@0) =1
@ >0

3. Ifkmax = 0, i.e. if ¢ is totally isotropic, there exists a unique parametrizationy =
¢ o @ such that

},(r+l) e K,
p0) =1
@ >0
@'(0)=1

Proof.

1. If {|c'V]|? # 0, i.e if @, = 1, then, puttingy = ¢ o @, the vector y'1 = @".cV is
unitary if and only if " = +A(g) by definition of A(q).

The only solution with @” > 0is then @’ = A(g) with initial condition @(0) = &.

2. 1f ||c'M]|2 = 0, and there exists an integer &, such that g,, * 0, then it is easy to
show that we have the following result (where we omit the proof):

LEMMA 7.2 Lety = ¢ o @ a parametrization of the curve ¢, and let us denote by ,[,f]

(respectively gf,f 1) the Gram’s determinant of F,, relatively to the curve ¢ (respectively to the
curvey).
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Then we have g‘[,}’ = cp'Zb"gf{]’].

Consequently, we may deduce

g1 =1 = ol =1

G

< @ = A(p if we choose @’ > 0

~ Q

3. If cis totally isotropic, i.e. if kmax = 0, then the proposition (5.1) gives us a unique

(r)
ny, € F_
function A(q; such that the vector ng,; = A1 = A(p)c'! satisfies {Ao'l ©) " ;
(0) =

Therefore, if we put y = ¢ o @ with @’ = A(g), we obtain

Yy = g’
=Act!
= nO;l
and thus, y"*1Y € F_,,and @’ (0) = 1. 0O

Remarks.

(1) Those parametrizations may be seen in a natural way as parametrizations “by
arc-length”, in the sense that they are nothing else but the parametrizations y = c o @
which giveus y!V = y,.

In other words, for the curve y, the new function A is identically 1, so that the
triangular matrix of change of basis from the basis {y?, ..., y'"”} tothebasis {v,, ..., v}
begins with a block of coefficients 1 on its main diagonal.

(2) In the two first cases, the parametrization may be called unitary, since it allows
us to norm the first non-isotropic vector that we meet.

In the third case, the parametrization is given by a function A (g satisfying a first
order differential equation. That is why this parametrization may be called an affine
parametrization.

Note that the result we have obtained gives a generalization of the well-known result
that any null geodesic has an affine parametrization, since a null geodesic is nothing but
a pseudo-regular curve, 1-regular, with kpax = 0.

(3) The functions which appear in the generalized Frenet’s frame depend on the
parametrization of the curve. We call generalized curvatures the functions which appear
in the generalized Frenet's frame for the good parametrization of the curve that we have
defined in this chapter.
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8. Remarks on the invariants srx, Yi,; and Gg.

As for Frenet's frames, the curve is characterized by its (generalized) curvatures, i.e.
the invariants Yy ;, 371, ¢;. More precisely:

THEOREM 8.1 Let 3¢ > 0, Yi,; and ¢ be smooth real functions, and (a;) g, a se-
quence of integer. There exists a curve for which the subspaces F,, are not degenerate, and
having the functions Y. ;, >k, Gi. for (generalized) curvatures. Furthermore, any two such
curves differ by an isometry (i.e. a translation followed by an element of the orthogonal
group).

The proof of this proposition works exactly in the same way as in the Riemannian
case, so we omit it (for details, cf. [Sp] second volume p. 1.43).

Notice also that the invariants 3¢;. and Y;.; are not exactly of the same nature. To
see that, it is sufficient to remark that the functions s¢;. are positive by definition (see
proposition 6.1), whereas the functions Y ; have, a priori, no sign.

As an example, let us consider the curve ¢ of R defined by
c: R —R"
1 4 4
r— Z(§t3 + t.212,§t3 -t)
We have:
c'V(r) = 141 +1,41,4r2 - 1)
2 (1) = (2t,1,21)
c®(1) = (2,0,2)
Hence, the vectors ¢!, ¢'?), ¢3 are clearly independent.

Respectively to this basis, the Gram’s matrix of ¢ is

0 0 -1
0 1 0
-1 0 O

In this example, we have (with our usual notations):

a=0, ay=3, dy=1, ny; =c'V, my=c?.

Since (¢'?')" = ¢ + 0.c1V, weget Yp,; = 0.

9. Generalizing the construction to arbitrary pseudo-Riemannian
manifolds

Let (M, g) be any n-dimensional pseudo-Riemannian manifold. Letc: I - M bea
smooth curve in M, where I is some open interval in R, containing 0.
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The tangent space T, M at ¢(0) = x € M is given with a non-degenerate quadratic
form g.. Forany ¢t € I, we may consider the parallel transport 7(¢): M — T ()M
along ¢ with respect to the Levi-Civita connection D of g. At any point c(t), the curve ¢
admits a velocity vector c(t) e T.(r)M, and iterated derivatives:

D'®¢ = Dyy(Dar(- - - (Dag €))).-

Y

k

Then c¢¥(2) := 1(¢) "' D!~V ¢ are vectors in T, M, and we may build a unique curve
y: I — T.Msuchthaty(0) = 0and y'¥ (1) = ¢'¥(r).

Now, we may translate our construction to ¢ by applying it to the curve y. For that,
we denote by FS(t) (respectively F”(t)) the space generated by {c(z),..., D% Ve(1)}
(respectively {cV (1), ...,c'F (2)}).

DEFINITION 9.1 The curvec is said “pseudo-regular” if
1. cisr-regularie F°, & Ff = F,
2. for any integer k < r, the Gram’s determinant of F’(t), i.e. the determinant of the

(k, k) matrix (D ¢(t), D' ¢(t)),ije€ {0,..., k — 1}), is either positive, identically zero,
or negative.

Since the parallel transport 7(#) is a linear isometry, we may deduce that
PrRoPOSITION 9.2 The curve ¢ is pseudo-regular if and only if the curvey is.

Therefore, if the curve c is pseudo-regular, our previous work allows us to build a
canonical frame {v;,..., v;} inside T, M, associated to the curve y. Consequently, if we
put w;(t) = 1(t)(v;(t)), we obtain a moving frame {w, ..., w,} for the curve ¢, with
the same invariants Y, j, »;, ¢x (which is a staightforward consequence of the fact that
Dg,w, (1) = 7(t)(v;(t)) since T(t) is linear).
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