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THE DIRAC OPERATOR ON COLLAPSING S^BUNDLES

BerndAMMANN

Abstract

We study the behavior of the spectrum of the Dirac operator on collapsing S1 -
bundies. Convergent eigenvalues will exist if and only if the spin structure is pro-
jectable.

1. Introduction

In this paper we study the spectrum of the Dirac operator on collapsing S1 -bundies.

There are some nice results about the behavior of the Laplace operator acting on
functions on a family of collapsing manifolds. Fukaya [9] proved that if a family
(Mnt gn)neN of Riemannian manifolds with sectional curvature bounded form above and
below and bounded diameter converges in the measured Gromov-Hausdorff topology to
a Riemannian manifold (JV, g) of lower dimension, then the eigenvalues of the Laplace
operator acting on functions on (Mn, gn) converge to those of (N, g).

Fukaya conjectured that it should be possible to replace the bound on the sectional
curvature by a lower bound on the Ricci curvature. So it seems that the connection be-
tween Gromov-Hausdorff topology and the spectrum should be much closer than we
know until today.

Other papers Connecting metric and topological properties to the behavior of the
spectrum of the Laplace operator acting on functions are [6], [7] and [14].

For the Laplace operator acting on p-forms with p ^ 1 the situation is more compli-
cated. Until now for p-forms there is no analogue to Fukaya's resuit. But if n : (M, g) —
{N, g) is a Riemannian submersion whose fibers are minimal submanifolds and if the
horizontal distribution is integrable, then according to Gilkey and Park [10,11] the spec-
trum of the p-form Laplacian on N is contained in the spectrum of the p-form Laplacian
on M. The pullbacks of eigenforms on N are eigenforms on M to the same eigenvalues.
So if we have a family of such submersions with fixed (N,g), then this result trivially
implies the convergence of certain eigenvalues.

Classification math.: 58G25,58G30,53C25.
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In a recent paper [12] Gilkey, Leahy and Park generalized some weaker version of
this result to arbitrary Riemannian submersions. If an eigenform on N to the eigenvalue
A pulls back to an eigenform on M to the eigenvalue it> then A ̂  /J.

In this paper we will concentrate on another elliptic differential operator, the Dirac
operator. We will describe the behavior of the spectrum of the Dirac operator when the
fibers of a principal S1-bundie collapse. While the Laplacian acting on functions and on
forms only dépends on the Riemannian metric, the Dirac operator also dépends on the
spin structure. It will turn out that for some spin structures, the projectable ones, there
are convergent eigenvalues whereas for other spin structures all eigenvalues diverge.

The methods of this article generalize the methods of [3] where we only treated the
case of geodesie fibers. There are even families that do not have bounded curvature but
for which our results imply convergence or non-convergence. Our method is based on a
splitting of the Dirac operator into a horizontal Dirac operator, a vertical Dirac operator
and a zero order term. An analogous splitting of the Laplace operator has been used
in |5].

Unfortunately the generalization to non-geodesic fibers has a drawback: unlike in
the geodesie case [3] we do not get any information about the signs of the non-
convergent eigenvalues of the Dirac operator.

In the proofs of this paper I omitted some technical calculations and I only dealt
with the case when the dimension b of the base manifold is even. More details and the
modifications for the odd-dimensional case can be found in my thesis [2]. I thank my
supervisor Christian Bar for many interesting discussions and good ideas how to present
the collapse result. I also want to thank Bruno Colbois who invited me to Chambéry and
Grenoble in November 1997. He told me much about the behavior of the eigenvalues
of the Laplacian when the manifolds collapse and much about small eigenvalues of the
Laplace operator.

2. Spin structures on S1 -bundies

We assume that S1 acts freely and isometrically on a compact, connected, oriented
(b + l)-dimensional Riemannian manifold (M, g), b ^ 1. Then M is the total space of
a principal S^bundle over some base space Nb := Mb+l/Sl. There is a unique metric g
on N such that rr : (M, g) — (N, g) is a Riemannian submersion.

The principal S^bundle M — N carries a unique connection- 1-form

iœ : TM - iR,

such that ker co | m is perpendicular to the fibers for any m e M,

The S1-action induces a Killing vector field K. The fibers of M - N are (totally)
geodesie if and only if $ := \K\ is constant in m G M. The length of a fiber is 2TT .̂ The
metric g on M is completely characterized by œ, £ and g.
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Now we recall the notion of a spin structure in order to fix the notation. The bun-
die of positively oriented orthonormal frames Pso(N) is a principal SO(fc)-bundle. The
unique non-trivial double covering of SO{b) will be denoted 0 : Spin(fc) — SO(fo). A
pair (Pspin(N)>£) will be called spin structure if P$pm(N) is a principal Spin(b)-bundie
over N and if 9 : Pspin(W) — Pso(TV) is a 0-equivariant, fiber preserving map. Two
spin structures (PSpin(W),£i) a n d (^fpin^)'^2) are isomorphic if there is a Spin(fc)-
equivariant, fiber preserving isomorphism A : Pspin(N) — Ps

2
pjn(JV) such that S1 = 9z°A.

A spin structure exists if and only if the second Stiefel-Whitney class Wz ( TN) van-
ishes. In genera! the spin structure is not unique. Having chosen a spin structure we can
define a spinor bundie on N, Clifford multiplication and a Dirac operator. The spectrum
of the Dirac operator dépends on the choice of spin structure.

The définitions of spin structure, Dirac operator, . . . on M are clearly analogous.
The S1-action on M induces an S1-action on PSo(M). A spin structure 9 : PsPin(TVf ) —
Pso (M) is said to be projectable if this S1 -action lifts continuously to PsPjn (M).

Examples.

(1) Weviewthe (&+l)-dimensionaltorus T**"1 as the total spaceof the circle bun-p
die T*7*1 - Tb. The torus T^x carries 2**"1 spin structures, half of them are projectable,
half of them are non-projectable. Recently the special case T2 — Tl = S1 with the trivial
spin structure and non-geodesic fibers has been intensively studied in [1].

(2) We view S2/+1 as the total spaceof the Hopf fibration S2/+1 - CPl. The (unique)
spin structure on S2/+1 is projectable if and only if CP; is spin and therefore if and only if
/ is odd.

There is a natural isomorphism from projectable spin structures on M to spin struc-
tures on N. However M may admit a non-projectable spin structure, even if there are no
spin structures on N. The Hopf fibration S2l+l — CP' with l even is an example for this
phenomenon.

In this paper we will not only look at one single S^fibered space M, but at a family
Mn of such spaces over a base space N that does not depend on n. For each n e N the
manifold Mn carries a Riemannian metric gn, such that nn : (Mn, gn) — (TV, g) is an
S^bundle and a Riemannian submersion. The quantities £n and con are defined as they
are defined for M. Roughly speaking, we will analyze the behavior of the spectrum of the
Dirac operator if în tends to 0, whereas CÜ„ stays small in a suitable sensé. This situation
will be called collapse.

Note that TV and g do not depend on n. On the other hand Mn may even change its
topological type for different values of n.

3. Projectable spin structures

Let (N, g) be a Riemannian manifold carrying a spin structure that shall be fixed
throughout this section. The eigenvalues of the Dirac operator Don N will be denoted
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by (Vj)jeN- Moreover let (M„, gn)neN be a family of Riemannian manifolds such that
S1 acts freely and isometrically on each Mnt and let (Mn,gn) — (N = Mn/Sl,g) be
Riemannian submersions.

The spin structure on Mn shall be the unique projectable spin structure correspond-
ing to the spin structure on N. As above let 2nSn be the length of the fibers and iœn the
connection-1-form on Mn — N. Furthermore we assume the collapsing condition

H4i -dcünll» - 0and 114,11» - Oforn^ oo

oc := limsup ||graden II» < 1

THEOREM3.1. — Theeigenvalues (Ay,*(n)) j e N p J t € Z of theDiracoperatorDn onMn

can be numbered in such a way that: (1) For alle > Q there isan$ G N, such that we

have for anyn ^ riQ and j G N, k e 2 - {0}

114,11» A M ( n ) 2 ^ \k\(\k\-<x) - e.

In particular we get \ jtk{n)2 — ooforn — oo.
Furthermore, ifMn and ou n do not depend on n, then we also have for j e N , f c G 2 - { 0 ) .

limsup (mm£n(p))2\jtk{n)2 ^ \k\

This upper bound ofhj^in)2 is not uniform in j and k. (2) Ifb = dim N is even, then

we get for n — oo
A

Howeverfor b = dim TV odd we obtain

In both cases the convergence of the eigenvalues \j,o(n) is uniform in j .

Examples.

(1) The square of the Dirac operator on the flat torus RlaZxRjêi with the trivial
spin structure has the eigenvalues

J ) ii e z> h e {o, ih * € z.

(2) We take the standard metric on C?', the co coming from the Hopf fibration
52/+1 _ £pi a n ( j a s e q u e n C e of constant fonctions (Sn)neM*^n > 0,£n — 0. Themetrics
on S2/+1 characterized by these quantities are called Berger metrics g#n. If / is odd, some
eigenvalues diverge whereas other eigenvalues converge to the eigenvalues of CP'. The
spectrum of the sphères with Berger metrics has been explicitely calculated in [13, 4].
C. Bar used the collapse results to calculate the spectrum of the Dirac operator on CP!

[31.
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Idea ofproof. — In order to prove Theorem 3.1 we write the Dirac operator Dn as
a sum of a "vertical Dirac operator" a "horizontal Dirac operator" and a zero order term.

For the définition of the vertical Dirac operator we need the Lie derivative of spinors
in the direction of the Killing field. The S1-action on Pspin^n induces an S1-action on
ZM„ = Pspin(Mî) xSpin({H-n 2>b+\- The latter action will be denoted by /c. A spinor with
base point m G M willbemappedbyK(e") to a spinor with base point m- e". Wedefine
the Lie derivative of a smooth spinor field Y in the direction of the Killing field K as

d
.2k (Y) (m) = - r

d s 5=0
e'"s)).

As 3?K is the differential of a représentation of the Lie group S1 on L2(£Mn), we get the
décomposition

into the eigenspaces V*f/Î of the operator «25c to the eigenvalue ik, kel. The S1-action
commutes with the Dirac operator on Mnt and therefore this décomposition is respected
by the Dirac operator.

We calculate the différence between the covariant derivative and the Lie derivative
in the direction of K. For any smooth section Y of ZMn we get

V * Y - J2fcY = - f y(dœn)Y- -y( /r /^)y(grad^)Y. (2)
4 2

Hère y (V) resp. y(/5) dénotes Clifford multiplication of a spinor by the vector V and the
2-form )S resp.

What we got until now is some kind of Fourier décomposition along the fibers. In
the following it will turn out that for any k there is a natural isomorphism QfcM from the
summand V]t,n to the vector space of sections of a twisted spinor bundie on the quotient
space AT.

To the principal S} -bundie nn : Mn — N we associate the complex vector bundie
Ln := Mn xsi C with a connection given by ia>n. The horizontal lift of a vector (field) X
on N to a vector (field) on M„ will be denoted by X.

For b even, the isomorphism Qk,n is given by the following technical lemma that is
proven in [2, Lemma-Definition 7.2.3].

LEMMA 3.2. — Let b = dim N be even. Thenforany n there is an isometry of Hubert
spaces

such that the horizontal covariant derivative is given by

-j y(K/£n)y(Wx)Qki„V¥) -
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whereWx is the vector field on N satisfyingdœn(Xt •) = (Wx, •>. Clifford multipliction is
preserved, i. e.

Now we are ready to prove the theorem for b even. We define the horizontal Dirac
operator as the unique closed linear operator Dg : L2(I.Mn) — L2(I.Mn) on each Vktn
given by

r%:=QkinoDnoQktn-*

where Dn is the twisted Dirac operator on ZN ® L~k.

We define the vertical Dirac operator

and the zero order term

Zn:=-(1/4) y(K/£n)y(dœn).

Using Formula (2) and Lemma 3.2 we can express the Dirac operator as a sum:

D" = ±-DÏ + D£ + t„Zn.

Since Dg, y(K/J!n) and Zn commute with the S^action they also commute with
J2fr. Therefore each summand of the above décomposition of the Dirac operator maps
each Vk,n into itself. Furthermore the spectrum of Dg\Von is just the spectrum of the

Dirac operator D acting on sections of ZiV. So the eigenvalues of Dn \ v converge to the
eigenvalues of D. This fact immediately implies (2) of the theorem for b even.

An elementary calculation shows that Dg anticommutes with y(K/£n) and there-
fore it anticommutes with D" :=

From this anticommutativity we get the formula

Dh" (J-
We take the square of A" := (l/£n)D!J + D£ and get

Nowfor <xn := Hgrad^Jloo and for Y G Vktn, k * 0 we have

M„
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The eigenvalues of (An )21 v are therefore larger than or equal to

As ïn - dcon is a bounded operator, whose norm vanishes for n — oo, the norm of the
zero order term tends to zero. So we get the first part of (1) of the theorem.

Nowlet Mn and u)n be independent from n. Then also Ln and Dn are independent
from n. Analogously we obtain

1*1(1*1

From this we get the second part of (1) for b even.

The proof for b odd runs quite analogously, but we have to do some modifications
as in this case the rank of the spinor bundie over Mn is two times the rank of the spinor
bundie over N. For details about this case we refer to [3] or [2]. D

Remark. — Suppose we have a complex vector bundie E -* N with a metric con-
nection VE. NOW we replace the Dirac operator D by the twisted Dirac operator DE act-
ing on sections of ZN <8> E — Nt the Dirac operator Dn will be replaced by the twisted
Dirac operator DniE acting on sections of ZMn ® n*E — Mn. Then Theorems 3.1, 4.1
and 4.2 are still valid. The proof of this generalized version is essentially the same as the
proof above.

4. Non-projectable spin structures

Now we turn to the case of non-projectable spin structures. In this case we get a
similar resuit, but with a stronger restriction on the gradient of the fiber length. The
variable k from the last section does no longer take integer values, but values in Z + ( 1 /2).
Therefore all eigenvalues will diverge.

We define N> g,Mn, gnrcon and £n as above. However in contrast to the last section
we do not assume that N carries any spin structure. Instead we suppose that each Mn

carries a non-projectable spin structure.

The collapsing condition in this section is

- 0 and II4JI. - O f o r w - 00
(3)

a := l imsup n - 0 0 | |grad^ n | | . < 1/2.

THEOREM 4.1. — All eigenvalues of the Dirac operator Dn onMn diverge.
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Moreoven theeigenvalues (À Jt*(n)) jeN,*ez+( 1/2) can be numberedin such a way that
(a) Foranye > 0 thereisno € N, such thatforanyn ^ «0 and j e N, k e Z+ (1/2) we

get

£ 2 > 1*1(1*1-00 - £.

(b) IfMn and(vn are independentfrom nt then weadditionallyhaveforany j e
kt Z + (l/2)

limsup | ( m i n ^ ( p ) ) 2 A M (n ) 2 1 < \k\

This upper bound is not uniform in j and k.

Example. — Suppose we have a family of collapsing Berger metrics on S2/+1 as in
the previous example, but with / even. Then all eigenvalues diverge. The same holds for
tori with non-projectable spin structures.

Idea ofproof. — The proof is a variation of the proof of Theorem 3.1. We will
restrict to the case b even.

Let 9n : P$p\n(Mn) — P$o(Mn) be a non-projectable spin structure on M„. In this
case N may or may not be spin. We define I^o(b)(Mn) to be the set of all frames in
^PsoW/?) having K/£n as first vector. Then ftou?) (Mn) is a principal SO(fc)-bundle over
Mn. MoreoverP := S^fi^ocwCM/i)) is a principal Spin(b)-bundie over MAI.

The action of S1 = (!R/2TTZ) does not lift to P, but the double covering of S1, i.e.
S1 s (R/4TTZ), does act on P. We define Spinc(fc) to be Spin(fc) xl2 (R/4nl) where
- 1 e I2 identifies (-A, c) with (A, c H- 2n). The complex standard représentation 2^
of Spin(fo) is also a représentation for Spinc(fc) where s + 4nl e R/4TT2 opérâtes as
exp(z*5/2). The actions of Spin (b) and [R/47rZon Pinduceafree action ofSpinc(b) o n P
and we can view P as a principal Spinc ( b) -bundie over TV. Then we can form the bundie

If N is spin, this bundie is just ZN <8> L | . If N is not spin, then neither I.N nor l |
1

exist but ZN ® L„ does exist.

Again we get a splitting

n)= 0 Vk,n

into eigenspaces V]t(W for 3fc to the eigenvalue ik. The rest of the proof of Theorem 4.1 is
the same as the one for the case k * 0 in Theorem 3.1. D
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The formulas in the proof also show the following lower bound for eigenvalues of
D2. Wedefinethe Cliffordnorm II n II a of a2-form n on M tobe the L2 -operator norm of
y(n) e EnddZM).

THEOREM 4.2. — Let (M, g) be a Riemannian manifold on which Sl actsfreely and
isometrically. The quotient N := M/S1 shall carry the unique metric g for which M — N
is a Riemannian submersion. We assume that M carries a non-projectable spin structure.

If a := Hgrad l̂loo < 1/2, then all eigenvalues (A ,)ie2 of the Dirac operator D on M
satisfy

V - 2

Remark. — This lower bound for the smallest eigenvalue of the Dirac operator dé-
pends on the spin structure.

The existence of such a bound is not surprising: on many standard spaces the spec-
trum of the Dirac operator is explicitely known, among many others flat tori [8] and com-
pact quotients of 3-dimensional Heisenberg groups with a left invariant metric [3]. For
these examples it turns out that the spectrum strongly dépends on the spin structure,
in particular the smallest eigenvalue also dépends on it. So for metrics close enough to
these Standard spaces there should be a lower bound for the smallest eigenvalue of the
Dirac operator depending on the spin structure.

Until recently such a bound was not known. Theorem 4.2 provides such a bound
for the case of a circle bundie with non-projectable spin structure and sufficiently short
fibers. If Hgrad̂ Hoo and ĤHw are sufficiently small Theorem 4.2 gives a better bound
than any other estimate published before. For more details and other recent estimâtes
depending on the spin structure I refer to my thesis [2].
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