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HARNACKINEQUALITIES ON GRAPHS

Thierry DELMOTTE

Abstract

We present how one can use discrete Harnack inequalities to characterize the
graphs whose Markov kernel satisfies Gaussian estimâtes or to study the minimal
growth of harmonie functions.

1. Parabolic Harnack inequalities and estimâtes of the heat kernel.

Let us write for an introduction the heat kernel on D&D.

Its meaning is a probability density in y to reach y after a Brownian motion of duration
t starting at x. It is from the analysis point of view related to the differential operator
Laplacian A since it is a fundamental solution (fix x and consider the function of t and
y) of the heat équation

3, - A = 0.

Now we may consider other kernels or fundamental solutions associated to other
second order differential operators L instead of A. It is well known for instance after the
works of E. de Giorgi [8], J. Nash [20] and J. Moser [18, 19] that if L is an uniformly el-
liptic second order operator in divergence form, the associated kernel satisfies estimâtes
similar to (1.1): 3c, C > 0, VJC, y, t,

Hère we have introduced some notations so that these estimâtes will make sensé on
more gênerai geometrie backgrounds: d(x,y) stands for the distance and V(x, y/t) for
the volume of the bail B(x, yft) centered at x and of radius V7.

Classification math, : 35B45,60J10.
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Thus, we can wonder when are estimâtes (G) true for the heat kernel associated to
the Laplace-Beltrami operator A on a Riemannian manifold. The previous case of the
uniformly elliptic operators in divergence form on RD is a particular one since the coef-
ficients of L can be hidden in the Riemannian metric. The estimâtes (G) are not always
true for any manifold and its associated operator A but they may be under certain geo-
metrie conditions. For instance P. Li and S.-T. Yau proved them when the Ricci curvature
is nowhere négative [ 15]. In fact the weakest (see (1.2) below) geometrie conditions have
been given independently by A. Grigor'yan [12] and L. Saloff-Coste [23,24] in 1992. They
proved (G) under the conjunction of two geometrie properties (DV) and (P). We give
in the comment after Theorem 3.2 an example of manifold with négative curvature so-
mewhere but which satisfies (DV) and (P).
(DV ) is a volume regularity (or "doubling volume" property):

3C>0, Vx,r, V(x,2r) < CV(x,r). (DV)

(P) is functional L2 Poincaré inequality:

3C>0, Vx,r,ft f ( ƒ - fB)2dv^Cr2 f ||V/||2d/j, (P)
JB(x,r) JB(x,2r)

where fs minimizes the left term, that is fs is the mean value of ƒ in the bail B(x, r)
with respect always to the Riemannian measure d̂ i.

The proof is based on Moser's itérative method and so goes through a parabolic
Harnack inequality. Let us first state the weaker elliptic Harnack inequality [17] which
applies to harmonie functions u:
We say that (HE) is satisfied if

3C > 0, Vx, r, Vu ̂  0, AM = 0in£U,2r) => sup u < C inf u. (HE)
B(x.r) *<*r>

Whereas the parabolic Harnack inequality [18] applies to solutions of the heat équation:
We say that (HP) is satisfied if

3C > 0, VJC, r, VM ̂  0, dtu- AM = Oin [0,4r2]x£(jt,2r) => supM^Cinfu, (HP)
Q_ Q+

where Q- = [r2,2r2]xB(x, r) and Q+ = [3r2,4r2]xB(jc, r).Aswassaid, these geometrie
conditions are the weakest, L. Saloff-Coste also proved reverse statements:

(DlOand(P) «> (HP) <=> (G). (1.2)

The following shows how to implement such a scheme on graphs and to obtain this
way bounds for random walks. The interest is to avoid any algebraic structure assump-
tion. In case the graph is generated as the Cayley graph of a finitely generated graph of
polynomial volume growth, the estimâtes were proved by W. Hebisch and L. Saloff-Coste
[13] in 1993. Other related works tending to a softer algebraic structure are [2] on more
gênerai graphs than Cayley graphs and [25] on the graphs lP but with non-uniform tran-
sition.
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2. Graphs.

We shall first define the geometrie setting of graphs. The graph structure will be
symmetrically weighted (like a Riemannian geometry) or alternatively we will consider
only réversible Markov chains.

Let Tbe an infinité set and iixy = \iyx ^ 0 a symmetrie weight onTxE It induces a
graph structure if we call x and y neighbours (x ~ y) when vxy * 0 (note that loops are

allowed). Vertices are weighted by m(x) = Y^ ixxy. For clarity we will assume that this

graph is connected and satisfies aA*(«) condition:

DÉFINITION 2.1. — Let a > 0, the weighted graph (Tt^) satisfies A* (<x) if

x ~ y => /iXy ^ ocm(x).

Thus, the graph is locally uniformly finite (VJC G T, #{y | y ~ x] < a"1). The graph
is endowed with its natural metric (the smallest number of edges of a path between two
points). We defineballs (for rreal)5(jc,r) = {y \ d(xry) ^ r} andthevolumeofasubset
A of T,V(A) = J]m(x).Wewillwritey(jc,r)for\/(B(jc lr)).

xeA

To the weighted graph we associate now a discrete-time Markov kernel. Set p(x, y) =

—-z-, the discrete kernel pn(x,y) is defined by
17l\ X)

Po(x,z) = ö(x,z)

y

This kernel is not symmetrie but ' = n , \ • We keep this notation which
m(y) m(x)

means the probability to go from x to y in n steps but it may also be interesting to think to
the density hn (x,y) = " which is symmetrie and is the right analog of the kernel

m(y)
Pi in the previous section.

We will say that u satisfies the (discrete-time) parabolic équation on (n, x) if

m{x)u{n + \,x) = ^2vxyu(n,y). (2.4)
y

It is the case of p, (.,y). We could also write (2.4) this way:

m{x)[u(n + l,x) - u{n,x)] - J^ Mxy["(̂ ,y) - u(n,x)] =0,
y

and recognize a form dt - A = 0. It is then possible to define a parabolic Harnack in-
equality property HP(CH) as on manifolds, see [11] for technical précisions.
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DÉFINITION2.2. — The weightedgraph (Lp) satisfies the Gaussian estimâtes G(Q,
Q,Crt cr) [ail constants are positive] if

., v ^ cim(y) ctduy)2 Crm(y) crd(x.y)2

dix'y) < " - e " * p U y ) < e "

We have hère a first distinctive feature of the discrete case, there is of course no hope for
alowerbound if d(x,y) > «sincethen pn(x,y) = 0.

The second feature is a lot more serious. It appears that pn (x, y) may be zero, simply
because d(x, y) and n do not have the same parity. It is even the case of one of the easiest
example, the standard random walk on 1. Take \xmn = 1 if \m - n\ = 1 and \xmn - 0
otherwise, that is at each step one goes left or right with probability 1 /2 for each. Then if
one starts at zero, one is always at an even integer for even times n and at an odd integer
for odd times. So there is no hope for a lower bound without some care. Furthermore
the behaviour of this Standard random walk on Z illustrâtes the fact that the discrete
diffusion is somehow not so smooth as in the continuous case.

The solution adopted in [10, 11] is to assume that there is a loop on each vertex,
more precisely we will complete the previous A* (a) condition and consider the follo-
wing.

DÉFINITION2.3. — Letoo 0, (T,LJ) satisfies A(a) if

f Vjcef, x - x
\ x - y => ixxy ^ ocm(x).

So in particular p(x, x) > a. Assuming this property, the next theorem gives an analog
of (1.2):

THEOREM 2.4. — Let a > 0 and assume (I*,/J) satisfies A(a), then the statements
below are equivalent:

(i) 3Q,C2 > Oforwhich(T,ij) satisfiesDV(Q) andP(C2).

(ii) 3CH > Ofor which (I*, v) satisfies HP(CH).

(Ui) 3c\, Q, Cr, cr > Ofor which (T, y) satisfies G{c\, Q, Cr, cr).

We have only given an idea of how to define HP(CH) and have refered to [11] for techni-
cal précisions. Here are now the définitions of the geometrie conditions in (i).

DÉFINITION 2.5. — The weighted graph (T, /J) satisfies the volume regularity (ordou-
bling volume property) DV (Ci) if

V j t e r , V r e R+, V(x,2r) < QV(x,r).
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This implies for r ^ s that

V(x,s). (2.5)

DÉFINITION2.6. — The weightedgraph (r,ji) satisfies the Poincaré inequality P(Cz)
i/V ƒ € Rr, V.XÖ e f, Vr € R+,

m(x)\f(x) - fB\z ^ dr1 ^ Vxylf(y) - f(x)Y,
0 x.yeB(XQ,2r)

wherefB=vïh) £ m{x)fU)-
xeB(xQ.r)

We shall now return to the condition p(x, x) ^ a. First it may seem frustrât ing
since very often random walks are considered without loops. But the result of Theorem
2.4 can be applied on a sort of twice iterated graph (see [11]). For instance in the case
of the standard random walk on Z, after two steps one stays at the same integer with
probability 1 /2 (one moves +2 with probability 1/4 and one moves - 2 with probability
114). Then it is possible to soit out a result for the original random walk, but this result,
especially for the lower bound, is very dependent on the graph and in particular of the
présence of odd length cycles.

It should be also noted that the condition p(x, x) ^ <x is not only a trick to avoid
parity problems but it has also turned out to be a very useful technical ingrediënt. As was
said after Définition 2.2, the discrete diffusion is not so nice to deal with and Moser's me-
thod (in particular the Cacciopoli inequalities) cannot be directly adapted by translating
differential calculerions into différence ones. And here the problem is not especially with
the discrete geometry but rather with the discrete time. As far as the discrete geometry
is concerned it has been possible in three different works [9, 14, 22] to implement Mo-
ser's method and obtain elliptic Harnack inequalities (namely A* + DV + P => HE). But
when we consider the discrete time we have to use something more, like the condition
p(x, x) ^ Of. There are different ways to use it. At the end of the introduction in [11], it
was only sketched how it could be used in a proof of a Cacciopoli inequality but this idea
was given up. Later in [6] the authors managed to implement one part of Moser's itération
and obtained mean-value inequalities. Perhaps the other part, which is about the beha-
viour of the logarithm of an harmonie function, could also be implemented. In [11] we
have managed to separate the difficultés by applying first the scheme to a continuous-
time Markov kernel on the graphs and then to introducé the condition p(xt x) ^ <x for
a comparison between the continuous-time and the discrete-time kernels. We describe
briefly this comparison in the following.

The continuous-time Markov kernel may be defined by

&t(x,z) = e-t

k=0
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One can check that it is the solution for (t, x) e D&+ x Tof

) = 5{x,z)

— 3Pt(xfz) =
ot

y

Now assume p(x, x) > a so that we can consider the positive submarkovian kernel p =
p- <xö [thismeans p(x,y) = p(x,y) - aö(x,y), then pn(x,y) is defined as in (2.3)] and
compute #„ and pn with p:

+ 00 £ +00

&nix,y) = ^ ( a"1 ) / ï5]^rPitUy) = 2>JtP*Uy). (2.6)
Jt=O " JNO

Pn(x9y) =

To compare the two sums we should study c* = &*/«* for 0 ^ k

It appears that

(2.7)
2

n ^ — and \k - (1 - <x)n\ < a^fh => ck^ C(a, oc) > 0. (2.8)

The meaning of condition n ^ a2 la2 is only to ensure that a^fn ^ an and so that fc
cannot be bigger than n.

Once we have "good" estimâtes for the continuous-time kernel (we put quotes be-
cause it is known from the works by M. M. H. Pang and E. B. Davies that the large dévia-
tion estimâtes are hère more complicated than (G)), we can use directly (2.7) and obtain
an upper bound for the discrete-time kernel. To obtain a lower bound with (2.8), we must
first find a value of a which ensures that for instance half of the whole sum (2.6) is contai-
ned by the terms for which | k - ( 1 - a) n \ ^ a^fn. This can be done thanks precisely to
discrete-time kernel upper estimâtes which yield estimâtes for pk(x, y).

3. Harmonie functions with polynomial growth.

In this section we shall study the following spaces and in particular their dimension.

DÉFINITION 3.1. — Let(T,ii) be a weighted graph, J#d(T, IJ) is the set of all fonctions
u which are harmonie on the whole graph and such that

3xoeT,3C>O, VJC € T\ {XQ}, \U(X)\
 d
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Similarly to (2.4), we say that u is harmonie at x when

m(x)u(x) =

that is, when the value of u at JC is the mean value of its values at x's neighbours with
respect to the weight p. The constants A and C depend on the function u but the vertex
XQ may be chosen anywhere if one can change C. So JCÖ will be fixed hereafter.

We will use the implementation of Moser's itération scheme, first to show that for
small d these spaces are reduced to constant fonctions, then to bound their dimension
for any d. Note that only the elliptic version of the itération scheme is needed and so only
a A*(of) condition.

THEOREM3.2. — If(T,v) satisfiesDV(Ci), P(C2) andA*(oc), then

d <h => dimjffd(rfji) = 1,

where h > 0 dépends on Q, C2 and a.

Proof: The elliptic Harnack inequality yields a Hölder regularity property (see Pro-
position 6.2 in [9]) which says that if « is harmonie on B(XQ, 2r) and x,y e B(xo, r) then

\u(y) - u(x)\ < C (*Ï5Ü!Ï\ sup |u|.
\ r / B(xo.r)

For u € &d (F, \x) and two fixed vertices x and y this yields, as soon as r is big enough
for B(XQ, r) to contain the two vertices,

—0 when r—+00 \f d<h

So u(y)=u(x), u must be constant. •

About the last property it may be worth here to compare on the manifold setting
the conjunction of {DV) and (P) with the stronger condition that the Ricci curvature
is nowhere négative. In the latest case, S. Cheng and S.-T. Yau proved in [1] a gradient
inequality which implies a Lipschitz inequality so that the property above is true with
d = 1. This is false in the more genera! case (DV) + (P). For an idea of what can be
such a manifold with négative curvature somewhere, one can check on R2 with polar
coordinates that u(r, 0) = rn cos 0 is a solution of div(>lVü) = 0 for a section A defined
by A(ri0)er = er and A(Tte)ee = n2eo- Consider so 0 < 17 < 1, the idea would be to
define a metric on IR2 by gm ( Ç, Ç) = AjJ Ç. £. The section A is not smooth near the center
but we can clearly take a régularisation of it there to define a smooth Riemannian metric
without changing the behaviour of u for large r and without losing the ellipticity property
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n2IIÇII2 < Am%.% ̂  IIÇII2 which ensures that the (DV) and (P) properties of R2 yield
ones for the new metric. As far as curvature for this metric is concerned, it is zero except
near the center where there is a concentration of négative curvature.

We turn now to the dimension of the spaces 3f'd for bigger values of d.

THEOREM3.3. — If(T,v) satisfiesDV(Ci),P(C2) andA*(<x), thenford ^ 1,

Cdv

where C dépends on Q # C2 and oc and where v = In Q / In 2 has appeared in (2.5).

This theorem has been proved on Riemannian manifolds by T. H. Colding and W. P. Mini-
cozzi II in 1996 [3,4, 5], It is a positive answer to a conjecture by S. T. Yau [26] which said
that these spaces should be of finite dimension (when the Ricci curvature is nowhere né-
gative). Their techniques based on Moser's itération method may also be applied on our
graph setting. In the following we use the proof of P. Li in [16].

We shall estimate the dimension of a vectorial subspace H c J#d(T, y) assumed of
finite dimension, so that for r ^ ro, the symmetrie nonnegative bilinear forms

Ar ( u,v) = ^2 m(x)u(x)v(x)
x<=B(xo,r)

are not degenerated on H and we may use associated orthonormal bases. Qr will dénote
the quadraticforms Qr(u) = Ar(u, w).

In fact the Poincaré inequality is not needed but only the mean-value inequality
below which appears in the proof of the elliptic Harnack inequality by Moser's itération
and which is true for a larger class of graphs (see [6]) than those which satisfy (DV) and

LEMMA3.4. — Foranyx e T,anyr ^ O and anyfunctionu harmonie on B(x,r),

z(y) (3.9)
*' ' yeB(x.r)

where Cm dépends on Q, C2 and <x.

Theorem 3.3 will follow from the two next lemmas. The first uses the mean-value
inequality and the second the polynomial volume growth.

LEMMA3.5. — LetO < e ^ 1 önd(M/h^i^jt harmoniefuctions.

k f k
- v^ Ce'v sup Q(1+6)r J2 "M (3*10)

where C dépends on Q, Cz and <x.
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Proof: For all x, we clefine

In case the denominator is zero, (3.11) doesn't need any proof. These coefficients are such
k k

that ^2 a / (*) = !- L e t u s aPp!y n o w ö - 9 ) t o the function ^P <xt•(x)u, for x fixed:

1=1 V 1=1

k

m(y)
V(xAl+e)r-cHXo,x))yeB(x_ii+e)r_dM) ^

k

SUp Q(l+€)r I 5 ^ OtiUi I . (3.11)

Wehaveforced d(x,y) ^ (1 + e)r - d(xo, A:) SO that y stays in the bail B(xo, (1 + e)r).

Now let us sum for JC 6 fî(jto, r) with respect to m, this yields

Cm-K- S UP

where

Aroughestimate of *T maybe obtained with (1 + €)r - d{xQ,x) > erand(2.5).

VU, er) ^ C ^

So /C ^ Cf 2€"v, and (3.10) follows. •

With a more careful manipulation of K, we could replace v by a slighty smaller ex-
ponent, see the e-volume regularity in [4],

LEMMA3.6. — Letk = dimH andfi > 1, 3r ^ r0 sucft thatif(Uj)i^i^k i$anApr-
orthonormal basis ofH, then:

ï=l
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Proof: The trace and determinant of AT* in an j4r-orthonormal basis will be denoted
txTAT< and detr AT>. In case there would not be any correct value of r, we would have

V O r o , tTfirAr < kr{2d+v+l).

Thus,

And since detr" AT = detr» Ar>. detr ' Ar,

iki2d++l) (3.12)

But if ( M, ) i^ ,-̂  jt is an Aro -orthonormal basis, the polynomial growth implies that for
any r ^ 1 and any z, | M, | is bounded by Crd, so

Qr(Ui) ̂  V(xo,r).(Crd)2

This way we can estimate ail terms in the development of the determinant of AT in

There is a contradiction with (3.12) when j — +oo. Indeed, detroi4^;ro.det^Jro Aro =

ProofofTheorem3.3:Lete = d"1 ,^ = 1 + e, r given by Lemma 3.6 and
an i4^r-orthonormal basis of//,

^ Ce v sup Q(i+e)r Y ]

< Ce"v = Cdv.

This yields Jt ^ Cdv since thanks to e = d"1 the values of ^"(2d+v+1) may be bounded
from below. •
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