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GENERIC RESULT FOR THE EXISTENCE OF A FREE SEMI-GROUP
Pierre-Alain CHERIX

Abstract

The main result of this note is the following: for a finitely presented group I"' =

(X : R), the semi-group generated by X is generically free (in the sense of Gromov).

And so we get the generic value of the spectral radius of & x, the transition operator

associated with the simple random walk on the directed Cayley graph of ' : r(hx ) =
1

VEX®
1. Introduction

Let T' be a finitely generated group. Fix a finite, not necessarily symmetric gen-
erating subset X, and let § = X U X ~! be the symmetrization of X. With X and S are
classically associated the usual Cayley graph G (I', S), but also the Cayley digraph (or di-
rected graph) G(I', X ); in the latter the set of vertices isI" and, foranyy € 'and s € X,
an oriented edge is drawn from v to ys.

We consider the normalized adjacency operators , or transition operators, hx
and hg; these are operators of norm at most 1 on /?(T"), defined by:

(hx€)(z) = #LXZazs)

seX

(hs€)(z) = '#1525(15) (Ecl’(D),zeT).

8€S

We denote by # E the number of elements in the set E. The motivation for this paper

came from the following result due to de la Harpe, Robertson and Valette [8] which says
that
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THEOREM 1.1. — Assume#X > 2. Seto(X) = likmsup | h% II;/k. where

hx is now viewed as the normalized characteristic function of X and h% denotes the Kth
convolution power of hx . Then

1
VH#X

with \/iy = o(X) ifand only if X generates a free semi-group, and o(X) = r(hx) if
either X is symmetric or T is hyperbolic in the sense of Gromov (but not in general).

< o(X) < r(hx)

In a joint paper with A. Valette [4], we looked at some consequences of such kind
of results (relating group theory and harmonic analysis) for one-relator groups. In par-
ticular, we got the following statistical result. For presentations I' = (X : r) with a fixed
number of generators # X and one relation r, the ratio

#{presentation rwith r(hx) = (#X)~'/?and |r| = N}
#{presentation rwith |r| = N}

tends (exponentially fast) to 1 when N tends to +o00. This means that "most” presenta-
tionsT = (X : r)giver(hx) = \/:EY (which implies in particular that the semi-group
generated by X in I is free). This is exactly the sense of genericity introduced by Gromov
([6], 0.2(A)), and studied further by Champetier {2].

The main tool in the proof of the preceding result is small cancellation theory,
which is frequent with one-relator groups. Unfortunately, small cancellation is not fre-
quent in the general case of finitely presented group.

The main result of this note is :

THeoReM 1.2. — For finite presentations, (X,R), the property
plhx) = +ﬂﬂ' is generic in the sense of Gromov.

I thank C. Champetier and A. Valette for many useful discutions and for proof
reading the article.

2. Some definitions and notations

Forr awordin Fx (the free group generated by X), we will denote by |r| its word
length. It is always possible to write r as an alternating product of words with positive
exponants (i.e. r = wilw¥! - - .wE!, where the w;’s are positive words in X ). We denote
by n4 (r) (resp. n_ (r)) the number of generators appearing in r with a positive exponent

+1. (resp. with a negative exponent —1).

If r is beginning by a positive word (r = w]lw;! - - .wZ!), then we get
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e ny(r)= Z lwai-1]
en_(r)= Z|w2i|

o ny(r) +n-(r) = |r]

When r begins by a negative word, we juste interchange the odd and even summations
in the preceding formulas.

DEFINITION 2.1, — Forafixede > 0, awordr € Fyx is e-balanced if the
decomposition of r in an alternating product of positive words (r = wilwF!...wi")
has the following property : for all i, w; is such that |w;| < €|r|.

This implies in particular, that the number of changes of sign is greater or equal
tol/e.

We say that a presentation (X, R) is e-balanced if every r in R* is e-balanced
(where R* is the set of all cyclic permutations of r or r=? for all relations r € R).

DEFINITION 2.2. — Awordr € Fx has the property E5 foré > 0, if for all
subwordsu of r of length |u| > |r|/4 we have,

either 1 < 28 < 146
=(u)

or 1 < 2= <144,

DErFINITION 2.3. — If P isa property of words in Fx , we say that P is generic

if, .

#{r € Fx | r cyclically reduced, |r| = n,r with P} 1
#{r € Fx | rcyclicallyreduced,|r|=n}

Set#X = k and #R = n, and denote by Pr(k, my, -+, my,) the set defined by

limno oo

{{X,R)|#X =k,R = {ry,---,ra},|ri| = my, ricyclically reduced }.
A property P of finitely presented groups is generic if

lim #{{(X,R)EPr(k,my,--,m,) {X,R) with P} _ 1
min(m.)-)m #Pr(k,ml,"',mn) - 1.

Foraword w € Fx representing the identityinI' = (X, R), we recall that A
is a Van Kampen diagram of w, if A is a 2-complex for which the 1-skeleton is a planar
graph, each edge of that graph being labelled by a element of X or X ~! such that when
we read the labelling of every 2-cell of the complex, we get a word in R* and such that
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the labelling of the border of the complex A is the word w. For more details about Van
Kampen diagram, see the appendix on small cancellation of [5] or [3].

We denote by 7(A) (resp. E(A) and #(A)) the number of internal edges of A
(resp. the number of external edges of A and the total number of edges of A).

DEFINITION 2.4. —  The combinatorial area of a diagram A is the number of
2-cells and we say that A is a reduced diagram of w if it has the minimal combinatorial
area among all diagrams representing w.

For everyw € Fyx representing the identity inT" = (X, R), the existence of such
areduced diagram of w is proved in [3].

DEFINITION 2.5. — A finite presentation (X, R) satisfies a 6-condition, if for
afixed0 < 6 < 1 and for all reduced diagrams A, weget I (A) < 8(#A4).

In [10], Ol'shanskii proved that for every fixed § > 0, the property of satisfying a
6-condition is generic.

3. The proof of theorem 1.2

We begin with some lemmas.

LemMA 3.1. — Forafixed mg inN, mg > 3, set
1 z nm 1 In/mol n
— 0 -
1= 1=

(where | z | is the integral part of the real number ). There exist constants A, C > 0,
C < 1 depending on mq such thata(n) < AC™°" forall nin N and C becomes smaller
when mq decreases. Furthermore, if ng = 0(mod my), then a(ng/mg) = B(no) and
foralli=0,---,mg—-2:

B(no +7) > B(no + i+ 1).

ProoF oF 3.1 We want to estimate a(n + 1) — a(n) :
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a(n+1) - a(n)
n+1

_ 1 (n+ 1 m e
- §2<+—”’"( 0) 2mo"(m?n)
1 mo—~2 mo
= m[(ﬁﬁ)‘ 12; (m)[; (n;o )”
= j=1+2
— (mon)! mﬁz(( —1)n+ p)-
T 2n(motl)p!((mp — 1)n =0 o nTH
mo—2 mo m l mo—2
> ([2 (™ )] [[e-6+1 1 <<mo—1)n+w))}/
=0 \ |j=i+2 &=0 n=l+1
mo~2
{(TH' 1) H [(mo — 1)n+ﬂ]}
p=1

The dominating terms of the fraction are of the same degre equal to mp — 1. So
that fraction tends to a negative constant whenn — oo.

By Stirling’s formula, we see that there exists a positive constant A such that

= men _ mo
la(n +1) = a(n)] < ACT", where C = 5 —— e —iy7m, < 1

By the central-limit theorem, there exists a constant A > 0 such that |a(n)| < AC™e™,
It is easy to see that C is decreasing when my is increasing.

To finish the proof , we just need to see by direct computation that for all ng = -

0(mod m¢) and all < between 0 and mg — 2, B(no + i) > B(no + i+ 1). D
LEmMa 3.2. —  Let|X| > 2andé > 8 be fixed, the property E; is generic.
Proor oF 3.2 We denote B(n) = #{r € Fx ||r| = n,r cyclically reduced},

A(n) = #{r € B(n)||r| = n, rwith Es} and C(n) = B(n) — A(n). C(n) can be
described as

C(n) = #{r € B(n)|3usubword of r, with |u| > |r|/4

+(u) n_(u)
_()>1+60r +()>1+6}

and either

(1) We want to estimate the number of u of length [ such that '4*-((35 >1+46

Denote h = ny (u), wehaven_(u) = I — h. 72 > 1+ disequivalentto h > 1*.so
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h
X U X ! having exactly h letters with an exponant +1. Thus

we can make exactly ( ! ) kP k'~ words of length less or equal to ! out of the alphabet

!
#{u € Fx | |u| < I, ureduced, +()>1+6}< Z (i)k’
n-(u) | j=~():

1+5 +1 if ]+6!

where v(1) = 4 2+8
() { ;_':: if not

By the 'same way, we estimate the number of words u of length [/ such that
> 1+ 4. We denote

n_(u)
ﬂ+(ui

B(l) = #{u € Fx | ureduced, |u| = I, n“E ; >1+dor— g ;>1+6},

so we have

B

IA

23 ()

i=v(l)

)

j=0

(2) We want to estimate the number of words r of length n in B(n) such that r
contains a subword of length [ > n/4 which does not satisfy -:—j%} <1+60r2={8 <

ﬂ+(‘u.i -
1+ 4. Thereare (n — I+ 1) places in r where the subword u can begin. Thus we can write
rasr = ryury and as r is reduced, r; and r; are reduced too.We have also |r;| + |r2| =
n — . Thatimplies #{r;} < 2k(2k — 1)I"1=1, So we can say

C(n) < Zn: B(l)(n = 1+ 1)(2k)*(2k — 1)"~1-2

l=|n/4]
1=~(1)
< z (k=1/2)"""2k22"(n — 1 4+ 1)2 Z ( ! )
I={n/4]
1—~(1)
< Z (k - 1/2)n—l 2k2+l2n—l(n I+1)2 Z ( l )
I=|n/4] 3=0

We can estimate C(n)/B(n),
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zﬂ: (k- 1/2)n—1-zk2+12n_,(n_l+1)2l—i(l)( ! )
J

C(n) < l=tn/al i=0
B(n) = k(k — 1/2)"~2(k — 1)
n 1=5(1)
k ( k )‘ 1\ 1
= —= Y. (n—1+1)2§;(.)—,.
k-1, = \k-1/2 m\J1 /2

As7 l) is almost equal to | ﬂ&{l l,wehavel — y(I) =| #5 |. Bylemma 3.1
with my = 2 + 4, we have

1=~(1)
i: ( P 2 < Agt/metmo
i)?

j=0
where C = (2(m°_1)’?£o-x>/mo)-
We deduce
C(n) - Hmotme TS '
< = L 1
s < 4> (55m) 2, (= Li/medmo+ 1+
I=|n /4] =0

IA

A Ck ) In/d4melmo
k=172

n_ln/4m°jm0 Ck “/mojmo mo-—1

1=0

=0

H/moimo _
So as the sumation Y —}'/4molme (k—f—l"/—z) meln— L l/mo | mo+ 1+

)ln/4molmo

i) increases polynomially with » and (% decreases exponennally, 5((1)5

goes to 0 when n goes to +0o, if we have 57 < 1. Fork > 2, toget z5f5 < 1,we
have to take C < 3/4and we have to choose mg such that
Mo
2(mg — 1){mo=1)/mo

< 0,75.

By a direct computation, we see that,as mg = 6 + 2,ford = 8§, | #3 = Lo and that
seyerm = 0.69. O

LEmMma 3.3. —  Forall fixede > 0, the property of being e-balanced is generic.
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PROOF OF 3.3 Let #X = k. Denote C(N) the number of cyclically reduced
words in F . First we see that C (V) is greater or equal to the number of words of length
N in F(X') with the last letter is not the inverse of the first, i.e.

(1) C(N) > 2k(2k — 1)N~2(2k - 2).

We can now estimate B(/N) the number of "bad" presentations, i.e the number of pre-
sentations (X : r) such there exists ' € R*, i.e. r' a cyclic conjugate of r, begining

with a positive word which has a length bigger than ¢N. As there is not more than 2N
elements in R*, we have

N
B(N)<2N Y C(N,0)
I=[eN]+1

where C(N, 1) is the number of cyclically reduced word of length N begining by a posi-
tive word of length [/ exactly. So we have :

N
(2) B(N)<2N Y K@k-1N
I=|eN}+1

Dividing (2) by (1), We estimate the ration of non e-balanced presentations over the
number of presentations :

B(N) N@2k-1)? & -
o S mEon 2 ek

I=|eN|+1
N(2k _ 1)2 kleNl+1(2k - 1)—leNJ—l _ kN'H(Qk _ 1)—N-—1
2k(k - 1) 1-k(2k-1)"1?
As k > 2, this expression goes exponentially to 0 when N — +o0. O

This proof appears in [4] fore = 1/4.

LEMMA 3.4. — Let (X, R) be a finite presentation satisfying a 6-condition
(with 8 < 1/199) then for all reduced diagrams A, there exists at least one r; in R*
which is a border of a cell of A and which has at least -1% of its elements on the border
of the diagram 0A.

It follows that for all non trivial wordw of Fx which maps on the identityinT" =

(X, R), there exists at least oner in R* which has at least 2 of its elements in w.

Proor oF 3.4 The 6-condition tells that for every reduced diagram A, I(A) <
f#A and by definition #A = E(A) + I(A). We deduce I(A) < 5E(A). Itis
enough to look at diagrams with a connected interior. In fact, if the reduced diagram A
does not have a connected interior, each of its parts with a connected interior define a

other reduced diagram (relatively to an other word), so the inequality holds for every part
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of A with a connected interior and we conclude by saying that increasing the number of
external edges does not change the inequality.

We define the following notation : for a cell f; of the diagram, we denote I'nt( f,)
(resp. Ezt(f;)) the number of edges of f; which are internal to the diagram (resp. which

are on the border of the diagram). We denote also # ( f;) the total number of edges of the
cell f;.

To obtain a contradiction, we suppose that all the cells of one diagram A have
more than 1% of their edges inside the diagram (i.e. for all f;, we have 100/nt(f;) >
#(fi)). Itis clear that E(A) = Y, Ezt(f;) and that I(A) = -21-2, Int(f;), because
every internal edge belongs exactly to two cells of the diagram and every external edge
belongs exactly to one cell of the diagram . So we get :

= %ZI"t(fi) + ZE“(I‘:‘) = Xi:#(fi) - %Z:I"t(f*’)'
If for all f,, we have

100Int(fi) > #(f:)
then 100 Elnt (fi) D_#(f) =#(A)+ % >_Int(fi)

\%

lggzjfnt f) > #()
1991(A) > #(A).
For this diagram, 1(A) > 735#(A). This contradicts the §-condition for § = 1/199. O

LeEmMaA 3.5. —  Fore > 0 small enough, ifr is e-balanced and has property Es
withé = 8,ifr = s;, -++s, withs;, € S = X UX "1, then every ordered subsequence
(y1,- -, y) of the ordered sequence (s;,,- - - ,si,,,) such thatl > 1%% |r| has at least 3
changes of sign.

PrOOFOF3.5 Set|r| = n,n4(r) = [,thusn_(r) = n—-land! > n -, wehave
1 > n/2. Asr has property E5, we have

s

+6
+

n
=<1I<
g =ts

So there are at least 715 n negative terms in r.

n.

N
(-3

Let r be a product of 3 words r = ryryrs with |r;| > |r|/4. As r has property Ej,
every subword u of length bigger than |r|/4 is such that either 1 < n=(8) <1 1§ either

( ny(u) =
nalu
< 2 <144,

So we can suppose that for ¢ = 1, 2, 3, we have either 1 < %I—}H— < 1+ é,either
1< 2=ln) <946,

= n4(r,) —
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As § = 8, we can assume that r, is such that

9n
0

-

So we can say that n4 (ry

2
i n
10 2
) > 7 and n_(r;) > 3. By analogous arguments, we have
n4(ri) 2 fgandn_(r;) 2 5 fo

10 fori = 2,3.

Denote by (v, -, Ym,) the subsequence of (y;,-- - ,y:) corresponding to the
elements of ry, by (Ym,+1,°**,¥m,) the subsequence of (y1,---,y;) corresponding
to the elements of r; and by (ym,+1,- -, ) the subsequence of (y1,---,y) cor-
responding to the elements of r3. As at worse 1% of all elements of r disappear in
(va1,--- ,u), the sequence (yi,- - - , Ym, ) Ccontains at worse 4% less than r; (similary for
(Ym, 419 yYma)s (Yma+1,* - - » Y1) With respect o, r3). And as each r; contain at least
10% of terms of both sign, we get n_ ((y1,** yYm,)) > 0and ny ((¥1,** 1 ¥m,)) > 0.
By the same arguments (Ym,+1,""* ,¥m,) and (Ym,+1, -+, ¥1) contain terms of both
signs. We conclude that the three ordered subsequences (y1,::*,Ym,)

(ym1+11 ST ymz) and (ymz-l-l) T yl) of (yla ot 1yl) each contain at least one Change
of sign.

Thus (yi1, - - - , y1) at least contains three. O

With these lemmas we can prove the following proposition

ProrosITION 3.6. — LetT’ & (X, R) be a finite presentation such that T’ has
a 6-condition, with @ < 1/199, and such that everyr € R is e-balanced and has the

property E5 (with ¢ relatively small compared to the minimal length of the relations and
é > 8), then X generates a free semi-group inT .

Proor oF 3.6 We denote by NV the normal subgroup generated by R in Fx and
let w be a non trivial element of N. Choose A a reduced diagram for w (i.e. A = w).
As the presentation (X, R) satisfies a §-condition with 8 less than 199, by lemma 3.4, the
diagram A contains a cell for which the borderis ar € R and such that r has 99% of its
generators on the border A of A. As r is e-balanced and has the property E;, by lemma
3.5, the ordered sequence (y,- - , ) defined by r N w contains at least 3 changes of
sign. So w contains at least 3 too. For two positive words wy, w; in Fx , wjw; ! jsa word
with only one change of sign, so it does not belong to N, which implies that that the
image of wywy ! inT is not trivial, and so w, is different of w, in I'. We conclude that the
semi-group generated by X in T is free. O

PRroOF OF THEOREM 1.2 We just need to remark that the intersection of a finite
number of generic properties is always generic and to appeal to lemmas 3.2, 3.3 and
Ol'shanskii’s result which asserts that for every fixed 6 > 0, the 6-condition is generic
(see [10]). We conclude with the proposition 3.6 and the theorem 1.1, hyperbolicity
being generic because it follows from a #-condition (it was independentely proved by
Ol'shanskii [10] and Champetier [2]). O

So we have proved that for finitely presented groups (X, R), the existence of free
semi-group generated by X is very frequent, but it could be interesting to see if it easy
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to decide whether a particular presentation (X, R) has such a property or not, just by
looking at the set of relations R. In that direction, it could be interesting to be able to
read the §-condition on R. That would unable us to get more than asymptotic results.
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