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RECENT RESULTS ON THE SEPARATRIX SPLITTING
FOR THE STANDARD MAP

V.F. LAZUTKIN

ABSTRACT. This is a short survey of recent works concerning separatrix splittings for the
standard map. Different approaches give an asymptotic expansion for the intersection angle
of the separatrices of the hyperbolic fixed point at the origin.

§1. THE FORMULA FOR THE SPLITTING

The followimg selfmap, of the two-dimensional torus T? = R2/(27Z)?, the so called
standard map, attracted the attention of mathematicians and physicists in last decades

[CL,[G]:

SM: (X,Y)— (X1, 1)
(1.1) Xi=X+4Y:, mod2n
Y1=Y +¢esinX mod 2r7.

This map is a good model for the study of the coexistence of regular and chaotic be-
haviour of trajectories in Hamiltonian systems with two degrees of freedom. If € = 0, the
transformation (1.1) is integrable: the lines y = const are invariant circles,the map being a
rotation on each such circle. What happens if ¢ is small positive? The point (0,0) becomes
a fixed hyperbolic point with the largest eigenvalue of the linear part

€ €2
(1.2) ,\_1+§+\/e+74-.

The stable, W*, and the unstable, W*, manifolds of this fixed point have many inter-
section, the homoclinic points. Let zo be the first point of their intersection which occurs
at the line z = 7 (the first means in the sence of linear ordering along W* starting with
29 , one can prove the existence of such a point). Denote by a the angle under which W*
and W* intersect at zo. The following asymptotic formula is true when € — 0:

(1.3) a~ R /VE
£
where [S]:
(1.4) wo = 1118.82770594090077842.. . . .

Typeset by ApS-TEX



158 V.F. LAZUTKIN

g

©° R aw X

INTERSECTION OF THE STABLE AND UNSTABLE MANIFOLDS

We see that this angle is nonzero. This results in a very complicated behaviour of
W**  creation of so called stochastic layer. It was A.Poincaré who first described such a
phenomenon in [PO).

Before describing the way how this (and a more refined,(1.12)) result can be obtained,
let us dwell on the numerical calculation of the prefactor wo . We give here a formal recipe.

Consider the following difference equation:

(1.5) u(z + 1) + u(z — 1) — 2u(z) = exp(u(z))

and try to find a formal solution to (1.5) in the form:

2 (o ]
() — —Tog T -2k
(1.6) ug (z) = —log 2 + gpok:c .
where pox are real numbers. Substituting (1.6) into (1.5) and equalizing the coefficients at
powers of z? at both sides of (1.5), one gets po1 = —% , Poz2 = %4- , Doz = —% ooy

and a recurrent equation for por from which they can be found uniquely (see [GLST]
Appendix Al). The following formula expresses the preexponent factor in (1.3) in terms
of the constructed sequence:

1.7 = lim 2473(—1) (2m)™
1.7) wo = % "(“)(2k+1)!"’°"'

In fact a more refined formula than (1.3) is valid. To write it down we need some
preliminaries. First, it is more useful a small parameter

2
(1.8) h=log,\=log(1+-€2-+\/e+ez)z\/g.
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instead of €. Second, it is preferable to calculate a so called homoclinic invariant w instead
of the intersection angle a . To define this quantity, let us write the equation of the "upper”
half of W* in a parametric form:

(1.9) X=X"(t,e), Y=Y"(t,e), t€eR,

and choose the parameter ¢ so that

(1) the standard map restricted onto the upper half of W* reads in terms of that
parameter as a shift ¢ — ¢ + h where k is given by (1.8);
(2) there is a kind of a regular behaviour of X~ (t,¢) as t = —o0, namely

(1.10) X~ (t,e) = Ce' + O(e*)

if t — —oo, minus infinity corresponding to the fixed point (0,0).
These requirements define the parametrisation (1.9) uniquely up to adding a constant
to the variable t. So the following tangent vector to W* at 2z is defined uniquely:

o (s0) = (dX'(t,e) dY~(t,¢)

a dt ) (x-(t.e). Y= (1,))=20

Analogously, one can define a natural tangent vector e*(z0) to W* at zp . Let @ = dX AdY
be the standard symplectic structure on the torus, which SM preserves. We define the
homoclinic invariant of the intersection of W* and W* at zy as

w=Q(e", ).

This quantity is the same for all points of the homoclinic trajectory passing through z¢.
I does not change under canonical (=area and orientation preserving ) transformations.
One can easily deduce that

(1.11) w=|e"]-||e°]:sina

but the multipliers in the right-hand side of (1.11) depend on the choice of a Riemannian
metric.

A more refined formula for the separatrix splitting reads:

T _a2 0o h2n
(1.12) w=-ﬁ;e h lz ?wn] .

n=0

The sum in the right-hand side of (1.12) is an asymptotic one. This means that if one
cuts this sum to a finite one, the error will be of the order of the first thrown up term.
The coefficients in (1.12) can be calculated with the use of computers, we shall discuss this
later. The value of wy is given in (1.4), some other values are:

w; = 18.59891...,

(1.13) wy =—4.34411...,
ws =—4.1829 ... ,
wyg =—4.88...
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The formula (1.3) was firstly obtained in [L1], see also [L2],[LST)]. The relation (1.7) was
discovered by Yu.B.Suris [Su]. Carles Simé used (1.7) to calculate with high presision the
value (1.4). Other maps and systrens were considered in [FS],[GLT],[HMS]. An exponetialy
small estimate for general analytic area-preserving map was firstly obtained by A.Neishtadt
[N]. A refined formula (1.12) was derived in [GLS).

§2. BEHAVIOUR OF THE UNSTABLE MANIFOLD IN THE COMPLEX DOMAIN

To obtain an asymptotics to the homoclinic invariant we investigate the analytic ex-
tension of W* into the complex domain. It is sufficient to explore the first component
X~ (t,€) of (1.9) because Y~ (t,€) = X~ (t,€) — X ~(t — h,€). This first component can be
found from the equation

(2.1) AiX~ =esinX™,

where

22) A f(t) = f(t + k) + f(t — B) — 2£(t),

under the condition (1.10). To fix the constant C of (1.10), we require that
(23) X(0)=m.

The condition (2.3) fixes the choice of the variable ¢ along the unstable manifold. We
fixed it so that ¢ = 0 corresponds to the intersection point 2. One can prove that there
exists a unique solution to the equation (2.1) completed with the conditions (1.10) and
(2.3), and this solution is an entire function of the variable t. This enables us to consider a
continuation of X ~(¢,¢) into the complex domain of the variable t. Since € (or equivalently
k) is a small parameter it is natural to seek an aymptotics for X ~(t,€) in the form

O 41 2n

(2.4) X~ (te)=) hn—!X,,(t),

n=0

where X,(t) do not depend on ¢. It was proven in [GLS] that X, (t) has a form

(2.5) Xo(t) = 4arctane?,
and forn > 1
(2.6) Xa(t) = Z (cosht)”‘ -sinht

where anx are real numbers. In particular,

sinh ¢
@2.7) Xi(t) = 4 (cosht)2 ’
) X,(t) = — 41 sinh? 91 sinht

864 (cosht)? + 432 (cosht)t
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The constructed functions have singularities at the points ¢t = i3 +i2kw ,k € Z, while
X~ (t,€) is an entire function of the variable ¢. This shows that the series (2.4) cannot
approximate X ~(¢,¢€) in a neighborhood of the mentioned singularities.So it is important
to know where (2.4) does approximate our function. Since X ~(¢,¢€) is real on the real axis
an so are the coefficients in the right hand side of (2.4), it is sufficient to consider them for
Imt > 0, as it follows from the symmetry reasons. One can prove that the series (2.4) is
asymtotic in any domain of the form

D={t€C:0§Imt$-12:, Ret<h, a.rg(t—i%)ﬁ—60<0}.

One founds that, in addition to the boundary conditions (1.10), the formal series in the
right-hand side of (2.4) satisfies the analogous condition at +oco . Therefore the constructed
series approximates the stable separatrix as well as the unstable one. One should replace
the domain D by another domain changing the sign of ¢ for the Proposition 4.5 to be true
in the case of the stable separatrix. It follows that the constructed series cannot reveal the
splitting of the separatrices.

In order to find the splitting one should investigate the behaviour of the function
X~ (t,e) in a neighborhood of the singularity of X,(t) that is nearest to the real axis.
To do that, let us pass to another function by the change:

- (.7 . € cpp—
(2.8) X (z§+hz,e)——zlog§+zU (z,€).

The equation (2.1) converts into

2

(2.9) A~ =eV" — ?Zexp(-u-),

where
A’f(z) = f(z + 1)+ f(z — 1) — 2f(=z).

We expand U~ in the series of the form

0 12n
(2.10) U=(z,6) =) —run(®)
n=0

where u;(z) depend only on z. It is not difficult to write down the equations which u (z)
obey:

(2.11) Aluy =e'o ,

(2.12) Aluy — e uy = Fo(uy,uy,-.- up_q)-
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One can prove that there exists a unique sequence u,(z), n = 0,1,2,..., of entire
functions which satisfies the equations (2.11), (2.12) and such that the expansion in the
right-hand side of (2.10) is asymptotic in any domain of the form

ﬁ1={z€C: |IRez| <1, —-—\}_—;;SlszO; 1r$arg:c$21r—60}

In any sector 6 > argz > 2w — 6o, 6o > 0, the functions u_(z) have the following
asymptotic expansions:

2 [o <]
- T -
(2.13) up(e) = ~log 2 + 3 posa~?*,
k=1
o0
(2.14) u (z) = Z pnkx'”‘ .
k=-n

The branch of logarithm in (2.13) is chosen so that the function (2.13) is real on the real
axis of the variable z. The coefficients ppi in (2.13) and (2.14) are real numbers.

§3. COMPARING THE STABLE AND UNSTABLE MANIFOLD

The equation of the stable manifold, W*, can be written in the analogous parametric
form:

(3.1) X =X*@t,e), Y=Y*(te), teR,

and after rescaling

+(;T = —ilog & 4 U+
(3.2) X (z2 +hx,e) = —tlog 5 +iU7(z,¢€).
One finds that
(3.3) Ut(z,e) = =2mi + U™ (~z,¢),

and U*(z,¢€) satisfies the same equation (2.9) as U~ (z,€), but with regularity condition
at £ — +o00. The difference

W(:c,e) = U+(zs€) - U-(IL',E)
is small on the real line of the variable t = i + hz. So, writing
(3.4) W(z,€) = e 2™ W(z,e) + O (e7") ,

we expect that W(z,¢) is a solution to the linearized equation:

2
(3.5) AP = <eU' + %e-U") ®.
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One can construct two linearly independent formal solutions, ®; and ®; of (3.5), the first
one being

d _ oo’ R2n
(3.6) ®1(z,6) = U™ (z,€) ~ 2=‘3 —1.()
where
(2) = =z (a)
‘Pl,n - dz n 1

and the second one, ®,, which satisfies the normalizing condition
(37) q’]Zq’z et @2-5@1 =1 N
where _

Af(z) = f(z) - f(z - 1).
One can find @, so that

et hht
(38) @2(1,6) ~ Z —12—'502,,;(:1:) ,
n=0 )

where @2 n(z) are entire functions which are real on the real axis of the variable z and
admit the following asymptotic expansion

[~ <]
k
(39) p2n(z) ~ £, emER,
k=-n-1
in any sector § < argz <27 -6, 6>0.
The solution W(z,€) can be expanded into a sum of two linearly independent solutions:

(3.10) W(z,e) = u(h)®;(z,€) + 0(h)®2(z,€)
where the coefficients are formal series:
oo h2n
(3.11) 6(h) ~ nzﬂ —fns
ad h2n
(312) pR) ~ 3 ",
n=0
6, , 1 being numbers.
It was shown in [GLS] that
(3.13) 0,, = —twy,

where wy, are the coefficients of the splitting formula (1.12).

One of the ways of computing w, is to use Fourier analysis to select the first harmonic
in (3.4) and expand it into the basis ®; , ®, . Using this method we calculated in [GLS]
the values (1.13) and first digits in (1.4).
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§4. CALCULATING THE SPLITTING VIA RESURGENCE

There exists another way of calculation of the coefficients in the expansion (1.12) which
results in (1.7) and similar formulae for other coefficients. That way comes from Jean
Ecalle’s theory of résurgence (see for example [CNP] and references therein).

A cruicial step is to apply the Borel transform to the series (2.13) and (2.14). We define
formally the Borel transform of U in two steps:

(1) omit the logarithm term in (2.13) and the terms with k¥ < 0 in (2.14);
(2) substitute % in the place of 72k,

In such a way we obtain the formal series

oo h2n
(4.1) U@y =Y —un(t)
n=0 :
where
Pnk 2
(4.2) un(t) = Z k-

It was shown in [I3 that uo(t) is analytic in a neighbourhood of the origin of the variable
t, and the nearest singularities are situated at the points ¢ = +27i. Obviously the same
is true for u,(t) with n > 1. Note that u,(2) are real on the real axis.

We conjecture the follwing analytical behaviour of u,(t) at the point ¢t = 2::

2n+3 )8+1

U.n(t) - Z (":_32(7”)8

(4.3)
+ log(t — 2i) z Ans(1)* (t — 2mi)°
=0
+ holomorphic function.

Here A,, are real numbers. One can determine the coefficients A,, from the asymptotics
of the coefficients pnx for large values of k. W of the equation (3.5) defined by the relation
(3.4), coincides with the residium of U at 27i times 27ie?™*. Indeed, U*(z) can be
reperesented as a Laplace transform of U, the integral running over the path going from
the origin to +oo on the real axis. Their difference, W, is the integral over the real axis,
and it can be calculated by moving the contour upwards.

As it was already mentioned, the coefficients A, , can be calculated from the asymtotic
behaviour of p, k. On the other hand, by use of the residims, the formers are linked with
W, and hence with the coefficients x and 6 in (3.10). This link gives a way to calculate
the coefficients w,, in the splitting formula (1.12). The simplie{formula is (1.7).

We refer the reader to [L3] and [LS] for more details.
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