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This note consists of a summary of the joint works with Sunada and an
explanation of the present situation of related problems.

7. Results.

Let (X, (ft) be a smooth, transitive and weakly mixing Anosov flow on a compact
manifold X. For each a € H\(X, Z) = H and x > 0, let

x(x, a) ~ #{p : prime closed orbits [p] = a, /(p) < x} ,

where [p] dénotes the homology class and /(p) the least period of p. Employing an idea
in analytic number theory, the Dirichlet density theorcm for arithmetic progressions,
namely Dirichlet L-functions, we give an asymptotic estimate of w(x,a) as x goes to
infinity. In contrast with the case of number theory, our "Galois group" H9 is possibly
of infinité order, so that some extra phenomenon will appear.

We dénote by h the topological entropy of the flow and by m a (unique) invariant
probability measure on X of maximal entropy. Let Z be the vector field generating the
flow.

We define the winding cycle $ , which is a linear functional on the space of
closed one-forms on X, by

= ƒ
Jx
ƒ w,Z) dm.
x

Since $ (exact forms) = 0, the linear functional $ yields a homology class in
H\(X, R) = Hom (Hl(X, R), R)). The winding cycle $ can be regarded as the average
of the "homologicaT direction by the following

1 r*
$(w) = lim - / (w,Z) (<pTx)dT a.e.x.

t—,oo t Jo

which is derived from the ergodicity of the flow.

THEOREM 1. — If$ vanishes on H*(X,R), then
ehx
e

, a) ~ C fe/2+1 as x f oo, where b = rank/f

THEOREM 2. — If $(H}(XyR)) ^ 0 , then

= o(x~N) as x f oo forany N > 0^ = o(x~N)

Typïcal example of Theorem 1 is the geodesie flow (UM,<pt) of negatively
curved manifold M. Theorem 1 is a generalization of Parry-Pollicott, Adachi-Sunada
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for the case when H is finite and Phillips-Sarnak and ours, for the case of compact
Riemann manifold with constant négative curvature.

To prove these results, we examine the singularises of the intégral of logarithmic
derivative of L-functions over the character group of H\(X, Z). For details, see [1]. In
the case of constant négative curvature, this is closely related to the pertubation of the
Laplacian. Although this case is special but the idea is essentially same and technically
simple, so see also [2]. Note that the special case in Theorem 1 is also obtained by
Pollicott and Lalley independently.

2. Problems or remarks.

(1) For ail examples satisfying conditions in Theorem 2 (as far as I know) ir(x, a)
is finite. Can you improve Theorem 2?

(2) In Theorem 1, how to explain geometrically the exponent 6/2 (not b) in the
denominator of right hand side? (cf. [2] p.146)

(3) Evidently, it is rather difftcult to consider the more précise asymptotic estimate
of n(x, a). This is related to analytic continuation and estimate of zero free région of
zêta or L-functions (see chap. 10 in [4]). There is another formulation as usual, which
is called "effective version", see [7] in the case of number theoiy.

(4) One can consider the other flows. This is a medley of my knowledge. It
should be noted that there arc cases where the Prime Orbits Theorem (ROT. see [4])
is established but not the Dirichlet Density Theorem (D.DT. = Theorcm 1).

a) The geodesie flow on hyperbolic manifold (the sectional curvature = —1).
In the case where vol < +oof ROT. and D.DT. hold (C. Epstein). In the case
where vol = +oo , ROT. for dim M = 2 is due to Guillopé and Lalley. ROT.
for dim M ^ 3 and D.DT, are not known.

b) The geodesie flow on compact non positively curved manifold. In the case
of rank 1, Knieper obtained weak form. Moreover, Hamenstadt said (in my
understanding), if the geodesie flow is mixing, then ROT. can be proved by the
same line of the argument of Margulis for ROT. in the case of negatively curved
manifolcL D.D.T. is not known. If the rank is greater than 1, we do not know
except [8], which is very weak.

c) Billiard System. The simplest case dim = 2, without trapping, ROT. is
obtained by T. Monta [9]. For gênerai survey see [10].

d) Teichmüller geodesie flow. This flow is "measurably Anosov". Only weak
form is known. See [11].
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