SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

FRANÇOISE DAL'BO

Une géométrie sans métrique la géométrie affine

Séminaire de Théorie spectrale et géométrie, tome S9 (1991), p. 77-79 http://www.numdam.org/item?id=TSG_1991_S9_77_0

© Séminaire de Théorie spectrale et géométrie (Grenoble), 1991, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

RENCONTRES DE THEORIE SPECTRALE ET GEOMETRIE GRENOBLE 1991

(Aussois du 7 au 14 avril)

Une géométrie sans métrique la géométrie affine

Françoise DAL'BO

Institut Fourier *
Université de Grenoble 1
B.P. 74
38402 SAINT MARTIN D'HERES CEDEX
FRANCE

^{*} Laboratoire associé au CNRS.

Une structure affine sur une variété de dimension n est la donnée d'un atlas (U_i, f_i, g_{ij}) où les $f_i(U_i)$ sont des ouverts de l'espace affine \mathbb{R}^n et où les changements de cartes g_{ij} appartiennent au groupe affine $A(n) = G\ell_n(\mathbb{R}) \ltimes \mathbb{R}^n$. Dans le cas particulier où les g_{ij} sont des éléments du groupe euclidien $E(n) = O(n) \ltimes \mathbb{R}^n$, la structure affine est une structure riemannienne plate. Soient M une variété et M son revêtement universel. On montre, cf. [CEG], qu'une structure affine sur M est déterminée par la donnée d'un difféomorphisme local $M \xrightarrow{D} \mathbb{R}^n$, appelé développement, et d'un homomorphisme $\pi_1(M) \xrightarrow{h} A(n)$ vérifiant la condition d'équivariance :

$$\forall \gamma \in \pi_1(M), \ D \circ \gamma = h(\gamma) \circ D$$
.

Si le développement est un difféomorphisme, on dit que la structure affine est complète. Une structure riemannienne plate sur une variété compacte est complète, cf. [Ch], c'est également le cas si la structure est lorentzienne plate (i.e. $h(\pi_1(M)) \subset SO(n-1,1) \ltimes \mathbb{R}^n$), cf. [C].

Attention. — Une variété affine compacte n'est pas nécessairement complète, par exemple, $\mathbb{R}^2 \setminus \{0\} / \langle \lambda \operatorname{Id} \rangle$, où $\lambda > 1$, est une structure affine incomplète sur le tore T^2 . Ceci dit, lorsque la structure est unimodulaire (i.e. $h(\pi_1(M)) \subset S\ell_n(\mathbb{R}) \ltimes \mathbb{R}^n$), Markus propose la

Conjecture de Markus (1962)

Une structure affine unimodulaire sur une variété compacte est complète.

Cette conjecture a été démontrée, entre autres, lorsque $h(\pi_1(M))$ est abélien, cf. [S] et nilpotent, cf. [FGH]. Le tore est l'unique surface affine compacte orientable, cf. [B]. En dimension trois, les variétés affines compactes complètes ont été classifiées par [FG] qui démontrent qu'elles sont toutes homéomorphes aux $T_A^3 = \mathbb{R} \times T^2/(t,z) \sim (t+1,Az)$, où $A \in S\ell_2(\mathbb{Z})$. Le π_1 de ces variétés est résoluble, ce qui résout en dimension trois la Conjecture d'Auslander (1977)

Une variété affine compacte complète M est à revêtement fini près une solvariété. En particulier, $\pi_1(M)$ contient un sous-groupe d'indice fini résoluble.

Dans cette conjecture qui vise à généraliser le premier théorème de Bieberbach, cf. [Bu] et [CD], l'hypothèse de compacité est essentielle, cf. [D]. Bien qu'une surface hyperbolique compacte Σ n'admette pas de structure affine, $\Sigma \times \mathbb{S}^1$ en admet une. En effet, on rappelle que Σ est difféomorphe au quotient de l'hyperboloïde $H = \{(x_1, x_2, x_3) \in \mathbb{R}^2 \times \mathbb{R}^+/x_1^2 + x_2^2 - x_3^2 = -1\}$ par un sous-groupe discret Γ de SO(2, 1) et que \mathbb{S}^1 est difféomorphe à $\mathbb{R}^+_*/\langle \lambda \rangle$, où $\lambda > 1$. Soient $H \times \mathbb{R}^+_* \xrightarrow{D} \mathbb{R}^3$ le difféomorphisme local défini par $D((x_1, x_2, x_3), t) = (tx_1, tx_2, tx_3)$ et $\Gamma \times \langle \lambda \rangle \xrightarrow{h} A(3)$

l'homomorphisme $h(\gamma, \lambda^n) = \gamma \lambda^n$ Id, on montre aisément que $D \circ (\gamma, \lambda^n) = h(\gamma, \lambda^n) \circ D$. La structure affine ainsi définie n'est pas complète puisque $D(H \times \mathbb{R}^+_+)$ est l'intérieur du cône de lumière. Considérons maintenant un fibré en cercles quelconque E sur une surface hyperbolique compacte Σ .

Question

Existe-t-il sur E une structure affine unimodulaire?

On sait que $\pi_1(E)$ et $\pi_1(\Sigma)$ sont liés par la suite exacte :

$$1 \longrightarrow \mathbb{Z} \longrightarrow \pi_1(E) \longrightarrow \pi_1(\Sigma) \longrightarrow 1$$
.

En particulier, $\pi_1(E)$ contient un sous-groupe libre à deux générateurs. Si l'on en croit la conjecture de Markus, une structure affine unimodulaire est complète, donc si E admet une telle structure, E est difféomorphe à T_A^3 , ce qui est faux car $\pi_1(E)$ n'est pas résoluble. La réponse à la question semble donc être négative. On trouvera dans [D2], un résultat intermédiaire concernant l'inexistence de structure affine unimodulaire sur certains fibrés de Seifert (i.e. variétés compactes de dimension trois admettant une action localement libre de \mathbb{S}^1), dont la base est une surface singulière hyperbolique.

Références

- [B] BENZECRI J.P. Sur les variétés localement affines et projectives, Bull. Soc. Math. France, 88 (1960), 229-332.
- [Bu] BUSER P. A geometric proof of Bieberbach's theorem on crystallographic groups, L'enseignement Math., 31 (1985), 137-147.
- [C] CARRIÈRE Y. Autour de la conjecture de Markus sur les variétés affines, Invent. Math., 95 (1989), 615-628.
- [CD] CARRIÈRE Y., DAL'BO F. Généralisation du 1er théorème de Bieberbach sur les groupes crystallographiques, L'enseignement Math., 35 (1989), 245-262.
- [CEG] CANARY R.O., EPSTEIN D.B.A., GREEN P. Notes on the notes of Thurston, London Math. Soc. Lectures Notes Series 111, Cambridge University Press, 1987.
- [Ch] CHARLAP L.S. Bieberbach groups and flat manifolds, Springer Verlag, 1986.
- [D] DAL'BO F. Des groupes magiques ou quand des sous-groupes libres affines opèrent proprement discontinûment sur \mathbb{R}^3 , Sem. théorie spectrale et géométrie, Grenoble, (1989-90), 19-26.
- [D2] . Exemples de fibrés de Seifert sans structure affine, (thèse en préparation, Grenoble).
- [FG] FRIED D., GOLDMAN W. Three dimensional affine crystallographic groups, Adv. in Math., 47 (1983), 1-49.
- [FGH] FRIED D., GOLDMAN W., HIRSCH M. Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56 (1981), 487-520.
- [S] SMILLIE J. Affinely flat manifolds, Doctoral dissertation University of Chicago, 1977.