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ON THE DIRICHLET PROBLEM AT INFINITY FOR MANIFOLDS
OF NON-POSITIVE CURVATURE

by Werner BALLMANN

A complete Riemannian manifold Mn does not admit non-constant harmonie
functions in Lp for 1 < p < oo, see [Y 2]. As for p = oo, this also holds if the sectional
curvature of M is non-negative [Y 1]. The case of non-positive curvature is discussed
below. We assume that M is simply connectée, Then M is homeomoiphic to the unit
dise and has a natural compactification by a sphère at infinity, M(oo).

Consider first the case of a symmetrie space M = G/K of non-compact type.
Then the space of bounded harmonie functions on M was described by Fürstenberg
[F]. It is naturally isomorphic to the space of bounded measurable functions on G/P,
where P C G is minimal parabolic. Note that dim(G/P) = n - rank(M) < n - 1.

Next consider the Dirichlet problem at infinity : given a continuous function ƒ on
M(oo), is there a harmonie function on M which extends continuously to ƒ at M(oo).
If M is a symmetrie space of non-compact type, the Dirichlet problem at infinity (for
arbitrary ƒ) can be solved iff rank(M) = 1. This is quite clear from the resuit of
Fürstenberg mentioned above. More generally, if the curvature K of M is strictly
négative, - a 2 < K < - 6 2 < 0, then the Dirichlet problem at infinity is solvable,
as was shown by Anderson [Ad] and Sullivan [S] (compare also [K 1]).

Suppose now that M admits a discrete group of isometries F such that M/F
is compact. If M is not a Riemannian product, then M is a symmetrie space of non-
compact type and rank(M) > 1, or M admits a geodesie which has no non-zero
perpendicular parallel Jacobi field [B 2, BS]. In the latter case we say that M is a space
of rank one. Such spaces were studied in [B 1], and in many respects they resemble
spaces of négative curvature.

THEO REM [B 3]. — Suppose M admits a discrete group of isometries F such
that M/F is compact. If M has rank one, then the Dirichtet problem at infinity is
solvable.
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In the proof it is shown that Brownian motion starting at a point p€ M converges
at M(oo) and that the hitting measure tends weakly to the Dirac measure at z G M(oo)
if p approaches z .

In the case of strictly négative curvature, more detailed results on harmonie
functions were obtained by Anderson and Schoen [AS]. They showed, among others,
that M(oo) is naturally isomorphic to the Martin boundary of M. Most of their results
have been reproved (and partly extended) by other means by Ancona [Ac] and Kifer
[K2].
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