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Séminaire de théorie spectrale et géométrie
CHAMBÉRY-GRENOBLE
1987-1988(81-89)

PINCHING AND COMPACTNESS THEOREMS
FOR COMPACT RIEMANNIAN MANIFOLDS

par Deane YANG

1. Introduction
The ultimate goal is to understand to what extent Lp constraints on the Riemann

curvature, p ^ f, détermine the geometry and topology of an n-dimensional Riemannian
manifold. This is already relatively well-understood when p = oo, Le. under pointwise
bounds on the curvature. Major results include the Berger-Klingenberg j-pinching
theorem [CE], Gromov's theorem on almost flat manifolds [BK], the Cheeger finiteness
theorem [PI], and the Gromov(-Greene-Wu-Peters) convergence theorem [GLP], [GW],
[P2].

The natural question to àsk is whether these L°° theonems can be extended to Lp

theorems for p > *. In §3 I describe counterexample that shows the conclusions of the
theorems do not necessarily hold if the pointwise constraints on curvature are simply
replaced by Lp constraints.

The purpose of this note is to show that the L°° theorems cited above do generalize
to corresponding Lp,p> y, theorems if a lower bound on the isoperimetric or Sobolev
constant of the manifold is assumed. This was also observed by L.Z. Gao in [G2], where
deeper Ln/2 pinching and compactness theorems may be found.

By applying the Sobolev inequality that is equivalent to the isoperimetric inequality
and Moser itération to Hamilton's Ricci flow, a Riemannian metric on a compact
manifold can be regularized so that the smoothed metric has pointwise curvature bounds
which depend on the Lp norm of the curvature of the original metric. Erom this we obtain
the following Lp analogues to the L°° theorems listed earlier (see §2 for définitions and
notations) :

THEOREM 1. — Given po > 1, p > f, x> C > 0, there exists a constant
6(n,po,p, Xi Q > 0, such that any smooth, n-dimensional, compact, simply connectée
Riemannian manifold satisfying :

Cs(M)>X, v{M)-ï \\Rm\\p < C , \\K - \\\n < «(n,p,X,C
is homeomorphic to the n-dimensional sphère.
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THEOREM 2. — Given po > 1, p > f, x> K > 0, ihere exists a constant
£(™,Po>P, Xi •K') > 0» swc/z ' ^ öHy smooth, n-dimensional, compact, simply connectée
Riemannian manifold satisfying:

CS(M) > x , v(Mrï\\Rm\\p < K , \\K\\» < e(n,p,x,/Od(M)-2
V(M)*

15 diffeornorphic to a nil-manifold.

THEOREM 3. — Fix constants V, D, x, K > 0, and p > %. Let Mi9 i = 1,.. „
be a séquence of smooth n-dimensional compact Riemannian manifolds such thaï

v(MÔ>V, d{Mi)<D, Cs(Mi)>x, \\Rm\\p<Kv(M)p.

Then the following hold:

L There is a finite number of diffeomorphism classes represented in the
séquence.

2. There exist a subsequence that converges in Hausdorff distance to a smooth
compact manifold with a C° Riemannian metric.

Remarks. —

1. In the compactness theorem, the bounds on the volume, diameter, and Sobolev
constant can be replaced by upper and lower bounds on volume and a lower
bound on the injectivity radius. One simply applies Croke's curvature free
estimâtes on the isoperimetric constant and on the volume of geodesie balls.

2. Theorem 3 implies, by Standard arguments, pinching theorems where the
pinching constant dépends on all of the constants used in the theorem.

Acknowledgments. — The elliptic version of Moser itération was used by L.Z.
Gao in [Gl] to study Einstein manifolds. When I learned of his work, I suggested to
him that the parabolic version of his estimâtes might be useful in proving Lp pinching
theorems. This paper contains the details of that simple observation.

More recently, in [G2] and [G3], Gao has studied the much more difficult and
interesting case, when p = - j . Although his arguments are much more complicated,
estimâtes like the ones presented here are also proved and used in his paper. He also
observes that the pinching and compactness theorems described here follow from the
estimâtes. Moser itération has also been applied to the Ricci flow independently by
Min-Oo [M] to prove a pinching theorem for négative Einstein manifolds.

ƒ would like to thank Ben Chow for helping me learn Moser itération for a
parabolic équation.

Part of this paper was written while I was visiting VInstitut des Hautes Études
Scientifiques in Bures-sur-Yvette, France. I would like to thank the director, Marcel
Berger, and the the stafffor their hospitality. I was also partially supported by a Sloan
Fellowship and by NSF grant DMS'86-01853.
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/ would also like to thank Sylvestre Gallot for observing that it suffices to use
the "average Lp norm", u(M)~r ||/||p, throughout.

2. Notation
Let Af be a smooth compact n-dimensional Riemannian manifold. We shall

dénote the diameter of M by d(M) and the volume by v(M). The Riemann curvature
tensor is Rm, and the Ricci tensor Rc. The sectional curvature fonction of M will be
denoted K.

Given e > 0 and x G M, let B€(x) dénote the geodesie bail of radius e centered
at x.

All norms in this paper are defined with respect to the given Riemannian metric
(which may vary with time t).

Suppose that the Riemannian metric of M dépends on 0 < t ^ T. Given
ƒ G C°°(M), dénote

II ƒ I I , =

and

\\\f\\\p = ( f i l ƒ 115*)

Define the Sobolev constant Cs(M) of the manifold M to be the largest constant
A'1 such that

ll/II^^AHV/lb + BII/lb, (0)
where B = 2v(M)~».

3. A counterexample
Let TV be a compact (n - 1)-dimensional flat manifold with volume 1 and

M = (—1,1) x N. Given e > 0 and a positive integer k9 consider the following
metric on M :

A straightfoward calculation shows that the Riemann curvature always satisfies \Rm\ <
Jfc2r"2. Therefore, given any p > 0 and k > (2p — l)/(n — 1),

In particular, the Lp norm of Rm stays bounded as e approaches zero, and a singularity
forms at e = 0. By pasting this example into a given compact manifold, we obtain a
contradiction to the statement obtained by replacing the the L°° bound on curvature
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in the Gromov convergence theorem with an Lp bound. On the other hand, there do
not seem to be many ways in which a singularity can form with an Lp bound, p > j ,
on curvature. For this reason, the Lv analogue of Cheeger's finiteness theorem might
still hold. Heuristically, there seems to be some connection between singularities with
Lp bounded curvature and Cheeger-Gromov's construction of collapsing Riemannian
manifolds.

In apparent contrast with p > \ , it is possible to construct a Riemannian manifold
with infinité topology near a point singularity and with L% bounded curvature.

4. Estimâtes for the heat équation

THEOREM 6. — Let q > n, 0 > 0; and let f, b be smooth nonnegative
fonctions on M x [0, T] which satisfy the following :

! ^ (1)

where A is the Laplace-Beltrami operator of the metric g(t) and given q > n, b is
assumed to satisfy :

sup *

Assume thatfor each 0 < t < T, the Sobolev inequality (0) holdsfor the metric g(t)
with fixed constants A, B.

Given po > 1, there exists a constant C which dépends only on n, q, po, 0, A,
B, T such thatfor any x G M, 0 < t < 7\

where fo(x) = / (x,0) .

Proof — Throughout this discussion C is a positive constant that dépends only
on n, g, po. 0* A, B, T and may change from line to line.

We shall assume that v(M) = 1. The estimâtes for arbitrary volume can be
obtained by considering what happens when the metric is rescaled by a constant factor.

Integrating (1) by parts, we obtain :

< f fp-*
JM

M

?M
Applying the Sobolev inequality, we obtain

JM J \ JM

M F JM JM JM
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Setting

we obtain the following basic estimate :

LEMMA 7. — Given p>po>l the following holdsfor 0 < * ̂  T :

ƒ>. (3)

{ 0

1

Now given 0 < r < r' < T, let

Multiplying (3) by V*. we obtain

| (^ ƒ ƒ") + 0 ƒ |V/* |2 < (Cp^V + V>') ƒ /p.
Integrating this with respect to t we get

[fp+ f f\Vf*\2*(Cp& + -^—)[T f f', r'<*<T. (4)

Given p > po and 0 < r < T, dénote

/ f*./
r JM

LEMMA 8. — Given p^po and 0 < r < T' < T,

)r ' )

Proo/. —

) , ) < ( p p
n r — r

f sup / / ^ n FA2 f\Vfi\2 + B2 f Fdt

Applying (4), we obtain the desired estimate. Q.E.D.

Now, dénote
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fix O < t < T, and set
Pk = povk

Tk = (1 -

Applying Lemma , we obtain

= H(pk(l + - ) ,
n

C\
— )

Taking the limit k —> oo,

| / ( x , t ) | < lim

It only remains to estimate || I ƒ H IPO *n terms of ||/o||po- Th*s ^s easy» s i n c e by (3)

| / /^ < C f ƒ*.
Integrating this, we obtain

[f"><ect f f».
Jt Jt=o

Integrating again,

AMU. (6)
Q.E.D.

5. Smoothing a Riemannian metric
Applying the estimâtes of § 4 to Hamilton's Ricci flow, the following is

straightforward :

THEOREM 9. — Given constants q > n, x, K > 0, there exists T(n, q, x, K) >
0 such thaï for any n-dimensional compact manifold M with a Riemannian metric go
satisfying CS(M) > x <md v(M)"f ||ifon|| j < K, the Ricci flow

= 2Rc(g) + s(t)g , g{0) = go , (7)
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where

s(t) = r(M)"1 f S(t)dVg, S(t) = the scalar curvature ofg(t),
JM

has a unique smooth solution g(t) for 0 < t < T satisfying the following estimâtes :

Cs(9(t)) > \x (8)

\\Rm{g{t))\\i <2Kv(M)t (9)
^ (10)

Proof. — First, observe that the flow fixes the volume of M. We can, as beforc,
normalize the volume equal to 1.

We apply the following theorem of Hamilton (see [H]) :

THEOREM 10. — Let g(f), 0 < t < T9 be a solution to (7) on a compact
manifold M. If the sectional curvature of g(t) remains bounded as t -> T, then the
solution extends smoothly beyond T.

Let [0,Tmax) be a maximal time interval on which (7) has a smooth solution
and such that (8), (9), and (10) hokL The curvature tensor Rm satisfies the following
équation (see [H]):

^ p = AgRm + Q(Rm) + -s(t)Rm, (11)

where Q(Rm) is a tensor that is quadratic in Rm. Prom this it follows that

p" 1 ^ / iRm^dVgK f ^ml^AlRmldVg + dn) f \Rm\^dVg. (12)
<» JM JM JM

We can therefore apply (6) and (2) to obtain the first two estimâtes of the following :

LEMMA 11. — Let

h(t)= sup

ƒ«) = Cs(git))
Then for 0 ^t< Tnm,

h(t) < ec("'«'x)*ür (13)
^ (14)

(15)

Proof of (15). — Given u € C°°(M), define
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A straightfoward calculation shows that

Integrating this differential inequality proves (15).

Erom (13), (14), (15), it follows that there exists T{n,q,x,K) > 0 such that if
t < min(T(n,g, x,üO,Tmax)» then strict inequalities hold in (8), (9) and k is bounded.
In particular, if Tmax < T(n, qy x, K\ then by Thcorem 10, the solution to (11) can be
extended beyond Tmax with (8), (9), and (10) still holding. This would contradict the
maximality of Tmax. Thereforc, T{n, q, x, A") < Tmax. Q.E.D.

6. Proof of pinching and compactness theorems
Theorems 1 and 2 are now easily proved. Assume that a compact Riemannian

manifold M satisfies the assumptions of Theorem 1, with S small. Let g(t) be the unique
solution to (7). Now a straightforward calculation shows that the function

ƒ = \Rijki - (gikgji - gugik)\ = \K - 1|

satisfies the parabolic inequality

^ ^ A ƒ + c\Rm\ f.

Therefore, if S is chosen sufficiently small, the metric g(T) is a smooth Riemannian
metric satisfying the pinching condition

By the Berger-Klingenberg theorem, M must therefore be homeomorphic to the sphère.
The proof of Theorem 2 is exactly the same, except that the Gromov almost flat theorcm
is used.

Theorem 3 is almost as easy. Given a séquence of Riemannian manifolds Mx

satisfying the assumptions of the theorem, Hamilton's Ricci flow can be solved on each
manifold and the metrics gi(ö) replaced by gi(T). The value T is given by Theorem 10
and is independent of i. The new metrics still have a lower bound for volume and an
upper bound for diameter, but now have a pointwise upper bound for curvature. The
finiteness statement now follows directly from the Cheeger finiteness theorcm.

To prove convergence, observe that for each k, the solution of the Ricci flow
gk(t) satisfies an estimate of the form

where 0 < a < 1, and C is independent of k and t Letting A; —• oo on a subsequence,
it follows that for positive time, the limiting metrics gooit) satisfy the same estimate.
Therefore, as t - • 0, it converges uniformly to a continuous metric.
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