SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

GUY LAFFAILLE

Valeurs propres et vecteurs propres d'un opérateur de Hecke sur S^2

Séminaire de Théorie spectrale et géométrie, tome 5 (1986-1987), p. 165-173 http://www.numdam.org/item?id=TSG_1986-1987_5_165_0

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1986-1987, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

VALEURS PROPRES ET VECTEURS PROPRES D'UN OPÉRATEUR DE HECKE SUR 5²

par Guy LAFFAILLE

Il s'agit de déterminer quelques valeurs propres et les vecteurs propres associés de l'opérateur de Hecke T_5 utilisé par Lubotzky, Phillips et Sarnak [LPS1, LPS2] : voir dans ce volume l'exposé de Colin de Verdière "Comment distribuer des points uniformément sur une sphère?"

Soient les 6 rotations R_i , $1 \le i \le 6$, de \mathbb{R}^3 , définies par les 6 quaternions q_i : $1 \pm 2I$, $1 \pm 2J$, $1 \pm 2K$, agissant par automorphismes intérieurs sur xI + yJ + zK. L'opérateur T_5 est défini sur les fonctions sur la sphère S^2 par la formule :

$$(T_5 f)(M) = \sum_{i=1}^6 f(R_i M).$$

L'opérateur T_5 commute aux permutations des coordonnées ainsi qu'au laplacien Δ . Il laisse donc stable les espaces H_n des harmoniques sphériques de degré n. L'espace H_n est de dimension 2n + 1 (cf. [BGM]).

Les calculs ont été faits en calcul formel à l'aide de macsyma.

Les harmoniques sphériques sont calculés à partir de $(x + iy)^n$ en prenant la partie réelle et imaginaire, en permutant les coordonnées et en appliquant la dérivation D définie par Dx = z, Dy = 0 et Dz = -x. Le procédé marche presque bien et impose une vérification.

Le groupe des isométries du cube agit sur les espaces propres de l'opérateur T_5 et en regroupant les composantes irréductibles on obtient des bases des harmoniques sphériques qui ne sont pas habituelles mais dès que le degré est un peu grand, il y a des choix à faire.

Le groupe \mathfrak{S}_3 agit sur H_n . On obtient ainsi une décomposition en somme de représentations irréductibles. Comme \mathfrak{S}_3 a 3 classes de conjugaisons, il y a 3 représentations irréductibles, deux sont de degré 1 et une de degré 2. Les

représentations de degré 1 sont la représentation triviale et la représentation où l'action est donnée par la signature. La représentation de degré 2 est donnée par les isométries d'un triangle équilatéral.

Dans H_n , les représentations triviales sont engendrées par des polynômes symétriques, celles qui sont données par la signature sont engendrées par le produit d'un polynôme symétrique par (x-y)(y-z)(z-x).

L'espace H_n a donc une décomposition de la forme $W_1 \oplus W_e \oplus W_2$. L'espace W_1 est la somme des représentations irréductibles, la dimension de W_1 est égale à 1 + [(2n+1)/6] où [] désigne la partie entière. L'espace W_e est la somme des représentations données par la signature, la dimension de W_e est égale à [(2n+1)/6]. L'espace W_2 est la somme des représentations irréductibles de degré 2. Le nombre de représentations irréductibles intervenant dans W_2 est égal à $2[(2n+1)/6] + \delta$ où δ vaut 0 si 2n+1 est congru à 1 modulo 6, 1 si 2n+1 est congru à 3 modulo 6 et 2 sinon.

On définit le type de H_n par $(n_1, n_{\varepsilon}, n_2)$ où n_1 est le nombre de représentations triviales, n_{ε} le nombre de représentations données par la signature et n_2 le nombre de représentations de degré 2 intervenant dans une décomposition en somme directe de représentations irréductibles.

On note j le nombre complexe $(-1+\sqrt{3}i)/2$. On note ρ la permutation circulaire sur les coordonnées telle que $\rho(x)=y$.

L'opérateur T_5 commute aux changements de signes des coordonnées : on peut donc raffiner la décomposition précédente; si $n \leq 5$, on montre ainsi que les valeurs propres sont nécessairement rationnelles. Les tables suivantes montrent que cette propriété n'est plus vraie pour $n \geq 6$.

Action sur H_1

Le type est (1,0,1).

-2/5	3
------	---

W_1	x + y + z	-2/5
W_2	$x+jy+j^2$	-2/5
	$x+j^2y+jz$	-2/5

Action sur H_2

Le type est (1,0,2).

$$\begin{array}{c|ccc}
-74/25 & 3 \\
54/25 & 2
\end{array}$$

W_1	xy + yz + zx	-74/25
W_2	$x^2 + jy^2 + j^2z^2$	54/25
:	$x^2 + j^2y^2 + jz^2$	54/25
	$xy + jyz + j^2zx$	-74/25
	$xy + j^2yz + jzx$	-74/25

Action sur H_3

Le type est (2,1,2).

-42/25	1
86/25	3
-82/125	3

W_1	xyz	-42/25
	$2(x^3 + y^3 + z^3) - 3(xy^2 + yx^2 + yz^2 + zy^2 + zx^2 + xz^2)$	86/25
$W_{arepsilon}$	(x-y)(y-z)(z-x)	-82/125
W_2	$x(z^2-y^2)+jy(x^2-z^2$)	-82/125
	$x(z^2-y^2)+j^2y(x^2-z^2)+jz(y^2-x^2)$	-82/125
	$f + j\rho(f) + j^2\rho^2(f)$	86/25
	$f + j^2 \rho(f) + j^2 \rho(f)$	86/25

On a noté $f = (z - y)(z^2 + yz + y^2 - 3x^2)$.

Action sur H_4

Le type est (2,1,3).

174/125	1
-666/625	2
302/125	3
-2074/625	3

$$f[1] = y^4 - 6x^2y^2 + x^4$$

$$f[2] = z^4 - 6y^2z^2 + y^4$$

$$f[3] = z^4 - 6x^2z^2 + x^4$$

$$f[4] = 4x^3y - 4xy^3$$

$$f[5] = 4y^3z - 4yz^3$$

$$f[6] = 4xz^3 - 4x^3z$$

$$f[7] = 4x^3z - 12xy^2z$$

$$f[8] = 4xy^3 - 12xyz^2$$

$$f[9] = 4yz^3 - 12x^2yz$$

f[1], f[2], f[3] engendrent un espace stable, les valeurs propres sont 174/125 et -666/625 (double). Le type est (1,0,1), f[1]+f[2]+f[3] engendre la représentation triviale. Les 2 vecteurs $f[1]+jf[2]+j^2f[3]$ et $f[1]+j^2f[2]+jf[3]$ engendrent la représentation de degré 2.

f[4], f[5], f[6] sont propres pour -2074/625. Le type est (0, 1, 1) f[4]+f[5]+f[6] est antisymétrique.

 $f[7]-\lambda f[6]$ est propre pour 302/125. De même pour $f[8]-\lambda f[4]$ et $f[9]-\lambda f[5]$. On a un type (1,0,1).

Action sur H₅

Le type est (2,1,4).

$-10530/5^5$	2
$(3934 - 768\sqrt{109})/5^5$	3
$(768\sqrt{109} + 3934)/5^5$	3
$-3490/5^{5}$	3

$$f[1] = 5xy^4 - 10x^3y^2 + x^5$$

$$f[2] = 5yz^4 - 10y^3z^2 + y^5$$

$$f[3] = z^5 - 10x^2z^3 + 5x^4z$$

$$f[4] = y^5 - 10x^2y^3 + 5x^4y$$

$$f[5] = z^5 - 10y^2z^3 + 5y^4z$$

$$f[6] = 5xz^4 - 10x^3z^2 + x^5$$

$$f[7] = 5y^4z - 30x^2y^2z + 5x^4z$$

$$f[8] = 5xz^4 - 30xy^2z^2 + 5xy^4$$

$$f[9] = 5yz^4 - 30x^2yz^2 + 5x^4y$$

$$f[10] = 20x^3yz - 20xy^3z$$

$$f[11] = 20xy^3z - 20xyz^3$$

La matrice de T_5 sur f[8], f[6], f[1] est :

$$\begin{pmatrix} 1630 & 23040 & 115200 \\ 1280 & 1374 & 24320 \\ 256 & 4864/5 & 1374 \end{pmatrix}$$

Les vecteurs propres sont :

$$[1, -(\sqrt{109} - 3)/60, -(\sqrt{109} - 3)/300],$$

$$[1, (\sqrt{109} + 3)/60, (\sqrt{109} + 3)/300],$$

$$[0, 1, -1/5]$$

On a le même résultat avec (f[9], f[4], f[2]) et f[7], f[5], f[3]. En regroupant les vecteurs pour la même valeur propre 3 représentations de degré 2, on a 2 représentations triviales et une donnée par la signature.

f[10] et f[11] sont propres pour $-10530/5^5$. Ils donnent une représentation de degré 2.

Action sur H_6

Le type est (3,2,4).

$3990/5^6$	1
57450/5 ⁶	1
56214/5 ⁶	2
$-4330/5^6$	3
$(9238 - 768\sqrt{781})/5^6$	3
$(9238 + 768\sqrt{781})/5^6$	3

$$f[1] = -y^{6} + 15x^{2}y^{4} - 15x^{4}y^{2} + x^{6}$$

$$f[2] = -z^{6} + 15y^{2}z^{4} - 15y^{4}z^{2} + y^{6}$$

$$f[3] = z^{6} - 15x^{2}z^{4} + 15x^{4}z^{2} - x^{6}$$

$$f[4] = 6xy^{5} - 20x^{3}y^{3} + 6x^{5}y$$

$$f[5] = 6yz^{5} - 20y^{3}z^{3} + 6y^{5}z$$

$$f[6] = 6xz^{5} - 20x^{3}z^{3} + 6x^{5}z$$

$$f[7] = 30xy^{4}z - 60x^{3}y^{2}z + 6x^{5}z$$

$$f[8] = 30xyz^{4} - 60xy^{3}z^{2} + 6xy^{5}$$

$$f[9] = 6yz^{5} - 60x^{2}yz^{3} + 30x^{4}yz$$

$$f[10] = 6y^{5}z - 60x^{2}y^{3}z + 30x^{4}yz$$

$$f[11] = 6xz^{5} - 60xy^{2}z^{3} + 30xy^{4}z$$

$$f[12] = 30xyz^{4} - 60x^{3}yz^{2} + 6x^{5}y$$

$$f[13] = 30y^{4}z^{2} - 180x^{2}y^{2}z^{2} + 30x^{4}z^{2} - 30x^{2}y^{4} + 60x^{4}y^{2} - 6x^{6}$$

L'espace engendré par f[1], f[2], f[3] est stable. La matrice de T_5 est :

$$\begin{pmatrix} 38806 & -17408 & -17408 \\ -17408 & 38806 & -17408 \\ -17408 & -17408 & 38806 \end{pmatrix}$$

Les valeurs propres sont $3990/5^6$, $56214/5^6$ (double), les vecteurs propres sont : [1,1,1], [1,0,-1], [0,1,-1]]. Le type est (1,0,1)

Les 3 espaces (f[8], f[4], f[12]), (f[9], f[5], f[10]), (f[7], f[6], f[11]) sont stables.

$$\begin{pmatrix} 10006 & -9984 & -9984 \\ -23040 & 2070 & 6400 \\ -23040 & 6400 & 2070 \end{pmatrix}$$

Les valeurs propres sont : $9238 - 768\sqrt{781}$, $768\sqrt{781} + 9238$, -4330; les vecteurs propres sont :

 $\left[1,\frac{\sqrt{781}+1}{26},\frac{\sqrt{781}+1}{26}\right],$ $\left[1,-\frac{\sqrt{781}-1}{26},-\frac{\sqrt{781}-1}{26}\right],$ [0,1,-1]. On obtient 3 représentations de degré 2, 2 triviales et une donnée par la signature.

Action sur H_7

Le type est
$$(3,2,5)$$
.
$$f[1] = -7xy^6 + 35x^3y^4 - 21x^5y^2 + x^7$$

$$f[2] = -7yz^6 + 35y^3z^4 - 21y^5z^2 + y^7$$

$$f[3] = z^7 - 21x^2z^5 + 35x^4z^3 - 7x^6z$$

$$f[4] = -y^7 + 21x^2y^5 - 35x^4y^3 + 7x^6y$$

$$f[5] = -z^7 + 21y^2z^5 - 35y^4z^3 + 7y^6z$$

$$f[6] = 7xz^6 - 35x^3z^4 + 21x^5z^2 - x^7$$

$$f[7] = -7y^6z + 105x^2y^4z - 105x^4y^2z + 7x^6z$$

$$f[8] = -7xz^6 + 105xy^2z^4 - 105x^4y^2z + 7xy^6$$

$$f[9] = 7yz^6 - 105x^2yz^4 + 105x^4yz^2 - 7x^6y$$

$$f[10] = 42xy^5z - 140x^3y^3z + 42x^5yz$$

$$f[11] = 42xyz^5 - 140x^3y^3z^3 + 42xy^5z$$

$$f[12] = 42xyz^5 - 140x^3yz^3 + 42x^5yz$$

$$f[13] = 210xy^4z^2 - 420x^3y^2z^2 + 42x^5z^2 + 7xy^6 - 105x^3y^4 + 105x^5y^2 - 7x^7$$

$$f[14] = 7yz^6 - 105y^3z^4 + 210x^2yz^4 + 105y^5z^2 - 420x^2y^3z^2 - 7y^7 + 42x^2y^5$$

$$f[15] = -7z^7 + 42y^2z^5 + 105x^2z^5 - 420x^2y^2z^3 - 105x^4z^3 + 210x^4y^2z + 7x^6z$$
Les 3 espaces $(f[13], f[8], f[6], f[1]), (f[14], f[9], f[4], f[2]), (f[15], f[7], f[5], f[3])$ sont stables. On a sur chacun 4 valeurs propres simples: 313358/5^7, -251890/5^7, (-23040\sqrt{58} - 70130)/5^7, (23040\sqrt{58} - 70130)/5^7.

Les vecteurs propres sont:

$$[0,1,-\frac{2}{15},\frac{2}{15}]$$

$$[0, 1, 2, -2],$$

 $[1, -1/4, -(\sqrt{58} + 2)/30, -(2\sqrt{58} + 19)/60].$
 $[1, -1/4, -(-\sqrt{58} + 2)/30, -(-2\sqrt{58} + 19)/60].$

On obtient 4 représentations de degré 2, 2 triviales et une donnée par la signature.

L'espace (f[10], f[11], f[12]) est stable. Les valeurs propres sont $90510/5^7$, $-132210/5^7$ (double); les vecteurs propres sont [1, 1, 1], [1, 0, -1], [0, 1, -1]. Le type est (0, 1, 1).

90510/5 ⁷	1
$-132210/5^7$	2
313358/57	3
$-251890/5^7$	3
$(-23040\sqrt{58}-70130)/5^7$	3
$(23040\sqrt{58} - 70130)/5^7$	3

Action sur H_8

Le type est
$$(3,2,6)$$
.

$$f[1] = y^8 - 28x^2y^6 + 70x^4y^4 - 28x^6y^2 + x^8$$

$$f[2] = z^8 - 28y^2z^6 + 70y^4z^4 - 28y^6z^2 + y^8$$

$$f[3] = z^8 - 28x^2z^6 + 70x^4z^4 - 28x^6z^2 + x^8$$

$$f[4] = -8xy^7 + 56x^3y^5 - 56x^5y^3 + 8x^7y$$

$$f[5] = -8yz^7 + 56y^3z^5 - 56y^5z^3 + 8y^7z$$

$$f[6] = 8xz^7 - 56x^3z^5 + 56x^5z^3 - 8x^7z$$

$$f[7] = -56xy^6z + 280x^3y^4z - 168x^5y^2z + 8x^7z$$

$$f[8] = -56xyz^6 + 280xy^3z^4 - 168xy^5z^2 + 8xy^7$$

$$f[9] = 8yz^7 - 168x^2yz^5 + 280x^4yz^3 - 56x^6yz$$

$$f[10] = -8y^7z + 168x^2y^5z - 280x^4y^3z + 56x^6yz$$

$$f[11] = -8xz^7 + 168xy^2z^5 - 280xy^4z^3 + 56xy^6z$$

$$f[12] = 56xyz^6 - 280x^3yz^4 + 168x^5yz^2 - 8x^7y$$

$$f[13] = -56y^6z^2 + 840x^2y^4z^2 - 840x^4y^2z^2 + 56x^6z^2 + 56x^2y^6 - 280x^4y^4 + 168x^6y^2 - 8x^8$$

$$f[14] = 56y^2z^6 - 56x^2z^6 - 280y^4z^4 + 840x^2y^2z^4 + 168y^6z^2 - 840x^2y^4z^2 - 8y^8 + 56x^2y^6$$

$$f[15] = -8z^8 + 56y^2z^6 + 168x^2z^6 - 840x^2y^2z^4 - 280x^4z^4 + 840x^4y^2z^2 + 56x^6z^2 - 56x^6y^2$$

(On a
$$f[13] + f[14] + f[15] + 4(f[1] + f[2] + f[3]) = 0$$
)

$$f[16] = 336xy^5z^2 - 1120x^3y^3z^2 + 336x^5yz^2 + 8xy^7 - 168x^3y^5 + 280x^5y^3 - 56x^7y^3 - 168x^3y^5 + 280x^5y^3 - 168x^5y^5 - 168x^5y$$

$$f[17] = 8yz^7 - 168y^3z^5 + 336x^2yz^5 + 280y^5z^3 - 1120x^2y^3z^3 - 56y^7z + 336x^2y^5z$$

$$f[18] = 8zx^7 - 168z^3x^5 + 336y^2zx^5 + 280z^5x^3 - 1120y^2z^3x^3 - 56z^7x + 336y^2z^5x.$$

L'espace (f[16], f[12], f[8], f[4]) est stable ainsi que les espaces (f[17], f[10], f[9], f[5]) et (f[18], f[11], f[7], f[6]).

Le polynôme caractéristique de 5^8T_5 est :

$$\mu^4 + 845544\mu^3 - 1005901569320\mu^2 -429489579891036000\mu + 274421233403533755850000.$$

Il n'a pas de racines dans Q.

On obtient 4 représentations de degré 2, et 4 de degré 1.

L'espace (f[13], f[14], f[1], f[2], f[3]) est stable. Le polynôme caractéristique de 5^8T_5 est

$$-\mu^5 + 2463198\mu^4 - 1169129581416\mu^3 - 865809302920125840\mu^2 +413070075163788807438000\mu + 159077854266345828514583100000.$$

Il a deux racines doubles et une simple. On obtient 2 représentations de degré 2 et une de degré 1.

Références

- [BGM] BERGER, GAUDUCHON, MAZET. Le Spectre d'une Variété Riemannienne, Springer LNM 194, 1971.
- [LPS1] LUBOTZKY, PHILLIPS, SARNAK . Hecke operators and distributing points on the sphere I, preprint, 1986.
- [LPS2] LUBOTZKY, PHILLIPS, SARNAK . Hecke operators and distributing points on the sphere II, preprint, 1986.