SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE

GILLES COURTOIS

Spectre d'une variété privée d'un ε-tube (Conditions de Dirichlet)

Séminaire de Théorie spectrale et géométrie, tome 4 (1985-1986), p. 25-33 http://www.numdam.org/item?id=TSG_1985-1986_4_25_0

© Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1985-1986, tous droits réservés.

L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SPECTRE D'UNE VARIÉTÉ PRIVÉE D'UN ε -TUBE (Conditions de Dirichlet)

par Gilles COURTOIS

I. - On considère une variété riemannienne (M^m, g) et N^n une sous-variété de M^m , ces deux variétés étant <u>compactes</u> et <u>sans bord</u>.

THEOREME 1. [C-F], [R-T]

$$\underline{\text{Si}} \quad p \geq 2$$
, $\lambda_{1}(\varepsilon) \xrightarrow{\varepsilon \to 0} \lambda_{1} \xrightarrow{\text{en particulier}}, \quad \lambda_{1}(\varepsilon) \xrightarrow{\varepsilon \to 0} 0$.

Remarque. L'hypothese $p \ge 2$ est nécessaire comme on le voit sur l'exemple :

$$M = S^{1}, \quad N = \{X_{0}\}, \quad M_{\varepsilon} \quad \text{est un segment de longueur} \quad (2\pi - 2\varepsilon),$$

$$X_{1}(\varepsilon) = [\pi/(2\pi - 2\varepsilon)]^{2} \quad \text{et} \quad \lambda_{1}(\varepsilon) \xrightarrow{\varepsilon \to 0} 0.$$

Le théorème 1 est un corollaire du

THEOREME 2. [R-T]. [C-F]

Si $p \ge 2$, $k_{\epsilon}(t, x, y) \xrightarrow{\epsilon \to 0} k(t, x, y)$ et la convergence est uniforme pour (t, x, y) dans tout compact de $[0, \infty] \times (M^m \setminus N^n)^2$.

Dans la suite, on s'intéresse à la convergence de $\lambda_i(\varepsilon) - \lambda_i$.

THEOREME 3. [OZ]

Si dim $M^m = 2$ ou 3, $N^n = \{X_0\}$ et si λ_i est simple on a $\lambda_i(\varepsilon) - \lambda_i = \varphi(\varepsilon)$, $f_i^2(X_0) + o(\varphi(\varepsilon))$ où f_i est une base orthonormée de l'espace propre associé à X_i , et où

 $\frac{\text{Remarque}}{\text{on a}} \quad \text{En particulier, sous les hypothèses du théorème 3}$ on a $X_1(\varepsilon) = \frac{\phi(\varepsilon)}{\text{vol } M^m} + o(\phi(\varepsilon))$.

THEOREME 4. [BE]

 \underline{Si} dim $M^m = 2$, λ_i simple, on a

$$\lambda_{i}(\epsilon) - \lambda_{i} = \sum_{n>1} a_{n} |\text{Log } \epsilon|^{-n}$$

où le rayon de convergence de la série est non nul.

Remarque. Dans [BE], l'auteur obtient des résultats analogues en dimension 3 et 4.

THEOREME 5. [B-G]

Pour toute variété M^m , si $N^n = \{X_0\}$, il existe une fonction explicite $\alpha(\varepsilon)$ tendant vers 0 avec ε telle que

$$\left|\lambda_{1}(\epsilon) - \frac{\varphi_{m}(\epsilon)}{\operatorname{vol} M^{m}}\right| \leq \varphi_{m}(\epsilon) \cdot \alpha(\epsilon)$$

$$\underline{où} \quad \phi_m(\varepsilon) \; = \; \begin{cases} (m-2) \text{ vol } S^{m-1} \varepsilon^{m-2} & \underline{si} \quad m \, \geq \, 3 \\ 2\pi \left| \text{Log } \varepsilon \right|^{-1} & \underline{si} \quad m \, = \, 2 \end{cases} \; .$$

En fait, par une méthode différente, on peut généraliser la théorème 5:

THEOREME 6. Pour toute variété M^m et toute sous variété N^n de M^m de codimension $p \ge 2$, il existe une fonction explicite $\alpha(\varepsilon)$ tendant vers 0 avec ε telle que :

$$\left|\lambda_1(\epsilon) - \frac{\text{vol } N^n}{\text{vol } M^m} \cdot \varphi_p(\epsilon)\right| \le \varphi_p(\epsilon) \cdot \alpha(\epsilon)$$
.

Remarque. Les théorèmes 3 et 4 donnent des <u>équivalents asymptototiques</u> de $\lambda_i(\varepsilon)-\lambda_i$, en particulier de $\lambda_1(\varepsilon)$, et les théorèmes 5 et 6 donnent une <u>majoration</u> de l'<u>écart</u> entre $\lambda_1(\varepsilon)$ et son équivalent asymptotique. Cette <u>majoration</u> $\phi_p(\varepsilon)\cdot\alpha(\varepsilon)$ dépend de bornes sur la géométrie de M^m et du plongement $N^n\hookrightarrow M^m$. <u>Précisément, si on note σ la courbure sectionnelle de M^m , S_{ξ} la deuxième forme fondamentale associée au vecteur ξ du fibré normal unitaire UN^n de N^n , inj $(N^n\hookrightarrow M^m)$ le rayon d'injectivité de l'application exponentielle associée à UN^n , on suppose que</u>

(1)
$$|\sigma| \leq K$$

$$(2) ||S_{\xi}|| \leq \eta$$

(3)
$$\operatorname{inj}(N^n \hookrightarrow M^m) \ge \alpha > 0$$

(4)
$$\sup_{\mathbf{x} \in \mathbf{M}^{\mathbf{m}}} d(\mathbf{x}, \mathbf{N}^{\mathbf{m}}) \leq \mathbf{D}$$

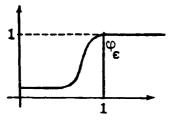
et la fonction $\alpha(\varepsilon)$ du théorème 6 vérifie en fait :

$$\alpha(\varepsilon) = \begin{cases} 2n \, \eta \, \frac{(p-2)}{(p-3)} \, \varepsilon \, + \, o_{K, \, \eta \, , \, D, \, \alpha}(\varepsilon) & \text{si} \quad p \geq 4 \\ \\ 2n \, \eta \, \varepsilon \, \big| \, \text{Log} \, \varepsilon \big| \, + \, o_{K, \, \eta \, , \, D, \, \alpha}(\varepsilon \, \big| \, \text{Log} \, \varepsilon \big|) & \text{si} \quad p = 3 \\ \\ 0_{K, \, \eta \, , \, D, \, \alpha}(\big| \, \text{Log} \, \varepsilon \big|^{-1}) & \text{si} \quad p = 2 \end{cases}.$$

Les hypothèses (1) - (4) qui interviennent dans la majoration de l'écart entre $\lambda_1(\epsilon)$ et son équivalent asymptotique sont nécessaires comme le montrent les exemples suivants :

1) Nécessité de l'hypothèse sur o.

On considere $N^n = \{X_0\}$ dans (M^m, g) et on suppose que $\operatorname{inj}(N^n \hookrightarrow M^m) = 2$. On note ρ la fonction distance à X_0 et on considere une fonction $\phi_\varepsilon : [0,\infty[\to [0,\infty[\ , \ C^\infty \ , \ telle \ que \ \phi_\varepsilon \geq 0 \ , \ \phi_\varepsilon' \geq 0 \ ,$ $\phi_\varepsilon(t) = 1$ si $t \geq 1$, et $\int_0^1 \phi_\varepsilon'(t) dt = \varepsilon$.



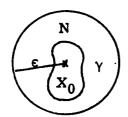
Les métriques $g_{\varepsilon} = (\varphi_{\varepsilon} \cdot \rho) \cdot y$ coihcident avec g sur $M^m \setminus B_g(X_0, 1)$ et $B_g(X_0, \varepsilon) = B_g(X_0, 1)$. En particulier,

$$\lambda_1(M^m \backslash B_{g_{\epsilon}}(X_0, \epsilon)) \; = \; \lambda_1(M^m \backslash B_g(X_0, 1)) \xrightarrow[\epsilon \to 0]{} 0 \;\; .$$

Dans la boule $B_{g_{\epsilon}}(X_0, \epsilon)$, la courbure sectionnelle σ_{ϵ} de g_{ϵ} n'est pas bornée, les autres invariants restant bornés.

Nécessité de l'hypothèse sur $\|S_{\xi}\|$.

On considère une variété M^3 et $N_{\varepsilon}^1 = \gamma$ une courbe fermée dont tous les points sont à distance inférieure à ϵ d'un point fixé x_0



On a alors $T_{\varepsilon}^{N} \subset B(X_{0}, 2\varepsilon)$ et par le principe du minimax $\lambda_{1}^{(M^{m} \setminus T_{\varepsilon}^{N})} \leq \lambda_{1}^{(M^{m} \setminus B(X_{0}, 2\varepsilon))}.$

L'estimation du théorème 6 ne peut être uniformément vérifiée pour
$$N_{\varepsilon}$$
 puisque $\lambda_1(M^m \setminus T_{\varepsilon}N_{\varepsilon}) \sim \frac{2\pi}{\text{vol }M^m} \left| \text{Log } \varepsilon \right|^{-1}$ et $\lambda_1(M^m \setminus B(X_0, 2\varepsilon)) \sim \frac{\text{vol }S^2}{\text{vol }M}(2\varepsilon)$.

Nécessité de l'hypothese sur le rayon d'injectivité :

Dans une variété M^m on considère :

On a $T_{\varepsilon} N_{\alpha} \subseteq T_{\varepsilon+\alpha} N'$, vol $N_{\alpha} = 2$ vol N'. Par le minimax :

$$\lambda_1(M^m \setminus T_{\epsilon}N_{\alpha}) \le \lambda_1(M^m \setminus T_{\epsilon+\alpha}N')$$
.

L'estimation du théorème 6 ne peut être uniformément vérifiée pour N_{\sim} puisque

$$\lambda_1 (M^m \setminus T_{\epsilon} N_{\alpha}) \sim \frac{2 \text{ vol } N'}{\text{vol } M} (p-2) \text{ vol } S^{p-1} \epsilon^{p-2}$$

$$\lambda_1(M^m \setminus T_{\varepsilon+\alpha}N') \sim \frac{\text{vol } N'}{\text{vol } M} (p-2) \text{ vol } S^{p-1}(\varepsilon+\alpha)^{p-2}$$
.

II. - RESUME DE LA DEMONSTRATION DU THEOREME 6.

Dans ce paragraphe, toutes les variétés considérées sont <u>compac</u>tes sans bord :

1) Les fonctions de Green : pour toute sous variété N^n de M^m , compacte sans bord, on définit <u>la fonction de Green de pôle</u> N^n , par

$$G_{N}(x) = \int_{N} dy \int_{0}^{\infty} [k(t, X, Y) - (1/\text{vol } M^{m})] dt$$
.

La fonction G_N est C^{∞} sur $M^m \setminus N^n$ et est caractérisée par les propriétés :

(1)
$$\Delta G_{N} = \delta_{N} - (\text{vol } N^{n}/\text{vol } M^{m})$$

(2)
$$\int_{\mathbf{X}} G_{\mathbf{N}}(\mathbf{X}) d\mathbf{X} = 0$$

où
$$\delta_N$$
 est la masse de Dirac de N^n , i.e. $\delta_N(f) = \int_N f(y) \; dy$.

La démonstration du théorème 6 provient d'une majoration de $\lambda_1(\varepsilon)$ par le principe du minimax appliqué à une fonction ad-hoc et d'une minoration de $\lambda_1(\varepsilon)$ qui découle du

LEMME. Pour toute variété M^{m} et toute sous variété N^{n} de M^{m} , si on note $G_{N}^{*} = G_{N}^{-}$ min $G_{N}(X)$, pour tout $\beta > 0$, on a $\lambda_{1}(G_{N}^{*} \leq \beta) \geq \frac{1}{\beta} \frac{\text{vol } N}{\text{vol } M} \stackrel{\text{où}}{\text{où}} \lambda_{1}(G_{N}^{*} \leq \beta)$ désigne la première valeur propre du domaine $\{G_{N}^{*} \leq \beta\}$ avec condition de Dirichlet sur le bord.

Preuve. Soit f la première fonction propre du problème de Dirichlet de $\Omega = \{G_N^* \leq \beta\}$. On a d'une part :

$$\int_{\Omega} [\beta - G_{N}^{*}] \Delta f \leq \lambda_{1}(G_{N}^{*} \leq \beta) \cdot \beta \cdot \int_{\Omega} f$$

et d'autre part, par la formule de Stokes :

$$\int_{\Omega} [\beta - G_{N}^{*}] \Delta f = (\text{vol N/vol M}) \int_{\Omega} f$$

d'où la minoration, puisque $\int\limits_{\Omega}f>0$. \blacksquare

- 2) Un cas particulier: dans le cas où M^m est de révolution autour de N^n , (par exemple $M^m = S^m$ et $N^n = \{X_0\}$), la fonction G_N^* est une fonction (décroissante) de la distance à N^n , i.e. $G_N^*(x) = g(r(x))$ où $r(X) = \operatorname{dist}(X, N^n)$.
- Le principe du minimax appliqué à $\varphi = g(\varepsilon) G_N^*$ donne alors facilement : $\lambda_1(\varepsilon) \leq \frac{\text{vol } N}{\text{vol } M} \ \frac{1}{g(\varepsilon)} + \frac{\alpha(\varepsilon)}{g(\varepsilon)}$ où $\alpha(\varepsilon) \xrightarrow{\varepsilon \to 0} 0$.
 - Le lemme appliqué à $\beta = g(\epsilon)$ donne :

$$\lambda_1(G_N^* \le g(\varepsilon)) = \lambda_1(\varepsilon) \ge \frac{\text{vol } N}{\text{vol } M} \frac{1}{g(\varepsilon)}$$
.

On conclut le théorème 6 dans ce cas particulier en remarquant que $g(\varepsilon)^{-1} = \phi_p(\varepsilon) + \delta(\varepsilon) \ \phi_p(\varepsilon) \quad \text{où} \quad \delta_p(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0 \ .$

3) Cas général : dans le cas général, la difficulté vient de ce que $G_N^{\#}$ n'est pas une fonction de la distance à N^m , le lemme ne pouvant pas s'appliquer directement pour la minoration.

Mais on a, pour toute variété M^m et toute variété N^n de codimension $p \ge 2$ vérifiant les hypothèses (1)-(4) que nous rappelons :

$$|\sigma| \leq K$$

$$||S_{\xi}|| \leq \eta$$

(3)
$$\inf(N^n \hookrightarrow M^m) \ge \alpha > 0$$

(4)
$$\sup_{\mathbf{X} \in \mathbf{M}^{\mathbf{m}}} d(\mathbf{X}, \mathbf{N}^{\mathbf{n}}) \leq \mathbf{D}$$

le théorème suivant.

On désigne par g_0 la métrique canonique de la sphère S^{p-1} .

THEOREME 7. Il existe deux constantes explicites $\bar{\gamma}(K, D)$ et $\gamma(K, D, \alpha, \eta)$ telles que

$$\overline{g} \circ r(X) - \overline{\gamma} \leq G_{\widetilde{N}}(X) \leq \widetilde{g} \circ r(X) + \widetilde{\gamma}$$

où la fonction $\bar{g}(r)$ [resp. $\tilde{g} \circ r$] est la fonction de Green de pôle $\{0\}$ de la boule $\bar{B}(0, D)$

[resp. $\widetilde{B}(0, \widetilde{\alpha}) = \widetilde{B}(0, \inf(\alpha, (1/\sqrt{K}) \operatorname{Arctg}(\sqrt{K}/\eta)))$] de \mathbb{R}^p muni de la métrique s'écrivant en coordonnées polaires autour de 0

$$\bar{g} = (dr)^2 + (ch Kr + \eta sh Kr)^{(2n)/(p-1)} (K^{-1}sh Kr)^2 g_0$$

[resp. $\widetilde{g} = (dr)^2 + (\cos Kr - \eta \sin Kr)^{(2n)/(p-1)} (K^{-1} \sin Kr)^2 g_0$], la condition au bord de \widetilde{B} [resp. \widetilde{B}] étant celle de Neumann.

Le théorème 6 découle alors de :

• la majoration de $\lambda_1(\varepsilon)$ par le principe du minimax appliqué à la fonction $\phi=\bar{g}(\varepsilon)-\bar{g}\circ r$ dont le quotient de Rayley vérifie

$$\int \left| \nabla \varphi \right|^2 / \int \varphi^2 \, \leq \frac{\text{vol N}}{\text{vol M}} \, \frac{1}{\overline{g}(\epsilon)} + \frac{\alpha(\epsilon)}{\overline{g}(\epsilon)} \; \; ;$$

$$\lambda_1(\epsilon) \geq \lambda_1(\Omega_\epsilon) \geq \frac{\text{vol N}}{\text{vol M}} \ \frac{1}{\widetilde{\mathbf{g}}^*(\epsilon)} \ .$$

• du fait que
$$\overline{g}(\varepsilon)^{-1} = \varphi_p(\varepsilon) + \overline{\delta}(\varepsilon)\varphi_p(\varepsilon)$$

$$\overline{g}^*(\varepsilon)^{-1} = \varphi_p(\varepsilon) + \overline{\delta}(\varepsilon)\varphi_p(\varepsilon)$$

où $\delta(\varepsilon)$ et $\delta(\varepsilon)$ tendent vers 0 avec ε .

Démonstration du théorème_7:

a) Majoration. On applique le principe du maximum à G_N - \widetilde{g} -r:

on a en effet

$$\begin{split} &\Delta \mathbf{G_N} = \delta_{\mathbf{N}} - (\text{vol N/ vol M}) \\ &\Delta (\widetilde{\mathbf{g}} \circ \mathbf{r}) = \widetilde{\Delta} (\widetilde{\mathbf{g}} \circ \mathbf{r}) + (\Delta - \widetilde{\Delta}) (\widetilde{\mathbf{g}} \circ \mathbf{r}) = \delta_{\mathbf{N}} - (1/\widetilde{\mathbb{V}}) + (\Delta \mathbf{r} - \widetilde{\Delta} \mathbf{r}) \cdot (\widetilde{\mathbf{g}}' \circ \mathbf{r}) \end{split}$$

où \widetilde{V} désigne le volume et $\widetilde{\Delta}$ le laplacien de $\widetilde{B}(0,\widetilde{\alpha})$. On a donc :

$$\Delta(G_{N}^{-}(\widetilde{\mathbf{g}}\circ\mathbf{r})) = (1/\widetilde{\mathbf{V}}) - (\text{vol N/vol M}) + (\widetilde{\Delta}\mathbf{r} - \Delta\mathbf{r}) (\widehat{\mathbf{g}}^{\dagger}\circ\mathbf{r}) .$$

Mais d'après le théorème de Heintze-Karcher, cf. [H-K], la fonction distance à 0 dans $(\widetilde{B}(0,\widetilde{\alpha}),\widetilde{g})$ est moins convexe que la fonction distance à N^n dans M^m , donc $\Delta r - \widetilde{\Delta} r \leq 0$ et $\Delta(G_N^-(\widetilde{g} \circ r)) \leq (1/\widetilde{V}) - (\text{vol N/vol M})$. (Il faut remarquer que lapartie singulière de $\Delta(\widetilde{g} \circ r)$ portée par $\partial \widetilde{B}(0,\widetilde{\alpha})$ est nulle puisque la fonction $\widetilde{g} \circ r$ sur M^m est de classe C^1).

On note $G_{\{X\}}$ le noyau de Green de pôle $\{X\}$ sur M^m et $G = G_{\{X\}}$ min $G_{\{X\}}(z)$. On a alors d'une part :

$$\int_{\mathbf{M}} \mathbf{G}(\mathbf{y}) \ \Delta \left(\mathbf{G}_{\mathbf{N}} - (\widetilde{\mathbf{g}} \circ \mathbf{r}) \right) (\mathbf{y}) \mathrm{d}\mathbf{y} \le \left[(1/\widetilde{\mathbf{V}}) - (\text{vol N/vol M}) \right] \int_{\mathbf{M}} \mathbf{G}(\mathbf{y}) \ .$$

Et d'autre part :

 $\int_{\mathbf{M}} G(y) \ \Delta \Big(G_{\mathbf{N}}^{-}(\widetilde{\mathbf{g}} \circ \mathbf{r}) \Big) (y) \mathrm{d}y = \Big(G_{\mathbf{N}}^{-}(\widetilde{\mathbf{g}} \circ \mathbf{r}) \Big) (x) - (1/\mathrm{vol} \ \mathbf{M}) \int_{\mathbf{M}} G_{\mathbf{N}}^{-}(\widetilde{\mathbf{g}} \circ \mathbf{r}) \ (y) \, \mathrm{d}y \ .$ On déduit :

 $G_N(x) - \widetilde{g} \circ r(x) \leq \left[(1/\widetilde{V}) - (\text{vol N/vol M}) \right] \left[\int_M G(y) \right] - (1/\text{vol M}) \int_M \widetilde{g} \circ r)(y) dy$ et la majoration de G_N s'obtient en majorant $||G||_{L^1}$ par un théorème de Bérard-Gallot, cf. [B-G], et en majorant $||\widetilde{g} \circ r||_{L^1}$ par le théorème de Bishop, cf. [C-E].

b) Minoration. De la même façon que précédemment, on obtient : $\Delta(G_N^{-}(\bar{g} \circ r)) = (1/\bar{V}) - (\text{vol N/vol M}) + (\bar{\Delta}r - \Delta r)(g^{-1} \circ r) + (\Delta_{sing}r)(g^{-1} \circ r)$

où $\Delta_{\mbox{sing}}^{\mbox{r}}$ désigne la partie singulière de Δr , portée par le art-locus de N^n .

D'après le théorème de Bishop, on a $(\bar{\Delta}r - \Delta r) \leq 0$ et on peut

 $\underline{\text{montrer}}$ que $\Delta_{\text{sing}} \mathbf{r} \leq 0$, d'où

$$\Delta \left(G_{N}^{-}(\bar{g}_{\circ}r) \right) \geq \left[(1/\bar{V}) - (\text{vol N/vol M}) \right] .$$

La minoration s'en déduit comme précédemment la majoration.

BIBLIOGRAPHIE

- [OZ] Tohoku Math. J. (1982), vol. 34,pp.7-14.
- [B-G] C.R.A.S. 297 (1983), p. 185.
- [R-T] J. Funct. Anal. 18, pp. 27-29 (1975).
- [BE] G. BESSON, Chirurgie et spectre du Laplacien. Prépublication de l'Institut Fourier, Institut Fourier, Math. Pures, Université de Grenoble.
- [C-F] CHAVEL-FELMAN, J. Funct. Anal. 30, pp. 198-222 (1978).
- [C-E] Comparison theorems in Riemannian Geometry. North-Holland Publ. Amsterdam, 1975.
- [H-K] A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. Ec. Norm. Super. Paris 11, pp. 451-470 (1978).